
Gambit Documentation
Release 16.1.1

The Gambit Project

Jan 10, 2024

CONTENTS

1 An overview of Gambit 3

2 Command-line tools 7

3 pygambit Python package 19

4 The graphical interface 71

5 Sample games 87

6 For developers: Building Gambit from source 89

7 Game representation formats 93

8 Bibliography 103

9 Detailed table of contents 105

Bibliography 107

Index 109

i

ii

Gambit Documentation, Release 16.1.1

Gambit is a library of game theory software and tools for the construction and analysis of finite extensive and strategic
games. Gambit is fully-cross platform, and is supported on Linux, Mac OS X, and Microsoft Windows.

Key features of Gambit include:

• A graphical user interface, which uses wxWidgets to provide a common interface with native look-and-feel
across platforms.

• All equilibrium-computing algorithms are available as command-line tools, callable from scripts and other pro-
grams.

• A Python API for developing scripting applications.

Gambit is Free/Open Source software, released under the terms of the GNU General Public License, Version 2.

We hope you will find Gambit useful for both teaching and research applications. If you do use Gambit in a class, or
in a paper, we would like to hear about it. We are especially interested in finding out what you like about Gambit, and
where you think improvements could be made.

If you are citing Gambit in a paper, we suggest a citation of the form:

Savani, Rahul and Turocy, Theodore L. (2024) Gambit: The package for computation in game theory,
Version 16.1.1. http://www.gambit-project.org.

Replace the version number and year as appropriate if you use a different release.

Python user guide An introduction to using the pygambit package in Python.

User guide

Python API reference The complete reference to all the functionality of pygambit.

API documentation

Command-line tools All Gambit’s methods for equilibrium computation are available via command-line programs.

Command-line tools

Graphical interface Gambit’s graphical interface lets you interactively create, explore, and find equilibria of games.

The graphical interface

CONTENTS 1

http://www.wxwidgets.org
http://www.gnu.org/copyleft/gpl.html\protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef Your command was ignored.\MessageBreak Type I <command> <return> to replace it with another command,\MessageBreak or <return> to continue without it. \errhelp \let \def \MessageBreak
 \def \errmessage LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help \endgroup \errhelp \let \def \MessageBreak
 \def \errmessage LaTeX Error: Unicode character (U+200E)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help \endgroup
http://www.gambit-project.org

Gambit Documentation, Release 16.1.1

2 CONTENTS

CHAPTER

ONE

AN OVERVIEW OF GAMBIT

1.1 What is Gambit?

Gambit is a set of software tools for doing computation on finite, noncooperative games. These comprise a graphical
interface for interactively building and analyzing general games in extensive or strategy form; a number of command-
line tools for computing Nash equilibria and other solution concepts in games; and, a set of file formats for storing and
communicating games to external tools.

1.2 A brief history of Gambit

The Gambit Project was founded in the mid-1980s by Richard McKelvey at the California Institute of Technology. The
original implementation was written in BASIC, with a simple graphical interface. This code was ported to C around
1990 with the help of Bruce Bell, and was distributed publicly as version 0.13 in 1991 and 1992.

A major step in the evolution of Gambit took place with the awarding of the NSF grants in 1994, with McKelvey and
Andrew McLennan as principal investigators, and Theodore Turocy as the head programmer. The grants sponsored a
complete rewrite of Gambit in C++. The graphical interface was made portable across platforms through the use of
the wxWidgets library (http://www.wxwidgets.org). Version 0.94 of Gambit was released in the late summer of 1994,
version 0.96 followed in 1999, and version 0.97 in 2002. During this time, many students at Caltech and Minnesota
contributed to the effort by programming, testing, and/or documenting. These include, alphabetically, Bruce Bell,
Anand Chelian, Matthew Derer, Nelson Escobar, Ben Freeman, Eugene Grayver, Todd Kaplan, Geoff Matters, Brian
Trotter, Michael Vanier, Roberto Weber, and Gary Wu.

Over the same period, Bernhard von Stengel, of the London School of Economics, made significant contributions in the
implementation of the sequence form methods for two-player extensive games, and for contributing his “clique” code
for identification of equilibrium components in two-player strategic games, as well as other advice regarding Gambit’s
implementation and architecture.

Development since the mid-2000s has focused on two objectives. First, the graphical interface was reimplemented and
modernized, with the goal of following good interaction design principles, especially in regards to easing the learning
curve for users new to Gambit and new to game theory. Second, the internal architecture of Gambit was refactored to
increase interoperability between the tools provided by Gambit and those written independently.

Gambit is proud to have participated in the Google Summer of Code program in the summers of 2011 and 2012 as a
mentoring organization. The Python API, which became part of Gambit from Gambit 13, was developed during these
summers, thanks in particular to the work of Stephen Kunath and Alessandro Andrioni.

3

http://www.gambit-project.org/turocy
http://www.wxwidgets.org

Gambit Documentation, Release 16.1.1

1.3 Key features of Gambit

Gambit has a number of features useful both for the researcher and the instructor:

Interactive, cross-platform graphical interface. All Gambit features are available through the use of a graphical
interface, which runs under multiple operating systems: Windows, various flavors of Un*x (including Linux), and Mac
OS X. The interface offers flexible methods for creating extensive and strategic games. It offers an interface for running
algorithms to compute Nash equilibria, and for visualizing the resulting profiles on the game tree or table, as well as
an interactive tool for analyzing the dominance structure of actions or strategies in the game. The interface is useful
for the advanced researcher, but is intended to be accessible for students taking a first course in game theory as well.

Command-line tools for computing equilibria. More advanced applications often require extensive computing time
and/or the ability to script computations. All algorithms in Gambit are packaged as individual, command-line programs,
whose operation and output are configurable.

Extensibility and interoperability. The Gambit tools read and write file formats which are textual and documented,
making them portable across systems and able to interact with external tools. It is therefore straightforward to extend
the capabilities of Gambit by, for example, implementing a new method for computing equilibria, reimplementing an
existing one more efficiently, or creating tools to programmatically create, manipulate, and transform games, or for
econometric analysis on games.

1.4 Limitations of Gambit

Gambit has a few limitations that may be important in some applications. We outline them here.

Gambit is for finite games only. Because of the mathematical structure of finite games, it is possible to write many
general- purpose routines for analyzing these games. Thus, Gambit can be used in a wide variety of applications of
game theory. However, games that are not finite, that is, games in which players may choose from a continuum of
actions, or in which players may have a continuum of types, do not admit the same general-purpose methods.

Gambit is for noncooperative game theory only. Gambit focuses on the branch of game theory in which the rules
of the game are written down explicitly, and in which players choose their actions independently. Gambit’s analytical
tools center primarily around Nash equilibrium, and related concepts of bounded rationality such as quantal response
equilibrium. Gambit does not at this time provide any representations of, or methods for, analyzing games written in
cooperative form. (It should be noted that some problems in cooperative game theory do not suffer from the computa-
tional complexity that the Nash equilibrium problem does, and thus cooperative concepts could be an interesting future
direction of development.)

Analyzing large games may become infeasible surprisingly quickly. While the specific formal complexity classes
of computing Nash equilibria and related concepts are still an area of active research, it is clear that, in the typical
case, the amount of time required to compute equilibria increases rapidly in the size of the game. In other words, it is
quite easy to write down games which will take Gambit an unacceptably long amount time to compute the equilibria
of. There are two ways to deal with this problem in practice. One way is to better identify good heuristic approaches
for guiding the equilibrium computation process. Another way is to take advantage of known features of the game to
guide the process. Both of these approaches are now becoming areas of active interest. While it will certainly not be
possible to analyze every game that one would like to, it is hoped that Gambit will both contribute to these two areas
of research, as well as make the resulting methods available to both students and practitioners.

4 Chapter 1. An overview of Gambit

Gambit Documentation, Release 16.1.1

1.5 Developers

The principal developers of Gambit are:

• Theodore Turocy, University of East Anglia: director.

• Richard D. McKelvey, California Institute of Technology: project founder.

• Andrew McLennan, University of Queensland: co-PI during main development, developer and maintainer of
polynomial-based algorithms for equilibrium computation.

Much of the development of the main Gambit codebase took place in 1994-1996, under a grant from the National Sci-
ence Foundation to the California Institute of Technology and the University of Minnesota (McKelvey and McLennan,
principal investigators).

Others contributing to the development and distribution of Gambit include:

• Bernhard von Stengel provided advice on implementation of sequence form code, and contributed clique code

• Eugene Grayver developed the first version of the graphical user interface.

• Gary Wu implemented an early scripting language interface for Gambit (since superseded by the Python API).

• Stephen Kunath and Alessandro Andrioni did extensive work to create the first release of the Python API.

• From Gambit 14, Gambit contains support for Action Graph Games [Jiang11]. This has been contributed by
Navin Bhat, Albert Jiang, Kevin Leyton-Brown, and David Thompson, with funding support provided by a
University Graduate Fellowship of the University of British Columbia, the NSERC Canada Graduate Scholarship,
and a Google Research Award to Leyton-Brown.

1.6 Downloading Gambit

Gambit source code and built binaries can be downloaded from the project `GitHub repository releases section`<https:
//github.com/gambitproject/gambit/releases>.

Older versions of Gambit can be downloaded from http://sourceforge.net/projects/gambit/files.

1.7 Bug reports

In the first instance, bug reports or feature requests should be posted to the Gambit issue tracker, located at http:
//github.com/gambitproject/gambit/issues.

When reporting a bug, please be sure to include the following:

• The version(s) of Gambit you are using. (If possible, it is helpful to know whether a bug exists in both the current
stable/teaching and the current development/research versions.)

• The operating system(s) on which you encountered the bug.

• A detailed list of steps to reproduce the bug. Be sure to include a sample game file or files if appropriate; it is
often helpful to simplify the game if possible.

1.5. Developers 5

http://www.gambit-project.org/turocy
https://github.com/gambitproject/gambit/releases
https://github.com/gambitproject/gambit/releases
http://sourceforge.net/projects/gambit/files
http://github.com/gambitproject/gambit/issues
http://github.com/gambitproject/gambit/issues

Gambit Documentation, Release 16.1.1

6 Chapter 1. An overview of Gambit

CHAPTER

TWO

COMMAND-LINE TOOLS

Gambit provides command-line interfaces for each method for computing Nash equilibria. These are suitable for script-
ing or calling from other programs. This chapter describes the use of these programs. For a general overview of methods
for computing equilibria, see the survey of [McKMcL96].

The graphical interface also provides a frontend for calling these programs and evaluating their output. Direct use of
the command-line programs is intended for advanced users and applications.

These programs take an extensive or strategic game file, which can be specified on the command line or piped via
standard input, and output a list of equilibria computed. The default output format is to present equilibria computed as
a list of comma-separated probabilities, preceded by the tag NE. For mixed strategy profiles, the probabilities are sorted
lexicographically by player, then by strategy. For behavior strategy profiles, the probabilities are sorted by player, then
information set, then action number, where the information sets for a player are sorted by the order in which they are
encountered in a depth-first traversal of the game tree. Many programs take an option -D, which, if specified, instead
prints a more verbose, human-friendly description of each strategy profile computed.

Many of the programs optionally output additional information about the operation of the algorithm. These outputs
have other, program-specific tags, described in the individual program documentation.

2.1 gambit-enumpure: Enumerate pure-strategy equilibria of a game

gambit-enumpure reads a game on standard input and searches for pure-strategy Nash equilibria.

Changed in version 14.0.2: The effect of the -S switch is now purely cosmetic, determining how the equilibria computed
are represented in the output. Previously, -S computed using the strategic game; if this was not specified for an extensive
game, the agent form equilibria were returned.

-S

Report equilibria in reduced strategic form strategies, even if the game is an extensive game. By default, if passed
an extensive game, the output will be in behavior strategies. Specifying this switch does not imply any change
in operation internally, as pure-strategy equilibria are defined in terms of reduced strategic form strategies.

-D

New in version 14.0.2.

The default output format for computed equilibria is a comma-separated list of strategy or action probabilities,
suitable for postprocessing by automated tools. Specifying -D instead causes the program to output greater detail
on each equilbrium profile computed.

-A

New in version 14.0.2.

Report agent form equilibria, that is, equilibria which consider only deviations at one information set. Only has
an effect for extensive games, as strategic games have only one information set per player.

7

Gambit Documentation, Release 16.1.1

-P

By default, the program computes all pure-strategy Nash equilibria in an extensive game. This switch instructs
the program to find only pure-strategy Nash equilibria which are subgame perfect. (This has no effect for strategic
games, since there are no proper subgames of a strategic game.)

-h

Prints a help message listing the available options.

-q

Suppresses printing of the banner at program launch.

Computing the pure-strategy equilibria of extensive game e02.efg, the example in Figure 2 of Selten (International
Journal of Game Theory, 1975):

$ gambit-enumpure e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,0,1,0

With the -S switch, the set of equilibria returned is the same, except expressed in strategic game strategies rather than
behavior strategies:

$ gambit-enumpure -S e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0

The -A switch considers only behavior strategy profiles where there is no way for a player to improve his payoff by
changing action at only one information set; therefore the set of solutions is larger:

$ gambit-enumpure -A e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,1,0,1,0
NE,1,0,1,0,0,1
NE,1,0,0,1,1,0

2.2 gambit-enummixed: Enumerate equilibria in a two-player game

gambit-enummixed reads a two-player game on standard input and computes Nash equilibria using extreme point
enumeration.

In a two-player strategic game, the set of Nash equilibria can be expressed as the union of convex sets. This program
generates all the extreme points of those convex sets. (Mangasarian [Man64]) This is a superset of the points gen-
erated by the path-following procedure of Lemke and Howson (see gambit-lcp: Compute equilibria in a two-player
game via linear complementarity). It was shown by Shapley [Sha74] that there are equilibria not accessible via the
method in gambit-lcp: Compute equilibria in a two-player game via linear complementarity, whereas the output of
gambit-enummixed is guaranteed to return all the extreme points.

8 Chapter 2. Command-line tools

Gambit Documentation, Release 16.1.1

-d

By default, this program computes using exact rational arithmetic. Since the extreme points computed by this
method are guaranteed to be rational when the payoffs in the game are rational, this permits exact computation
of the equilibrium set. Computation using rational arithmetic is in general slow, however. For most games,
acceptable results can be obtained by computing using the computer’s native floating-point arithmetic. Using
this flag enables computation in floating-point, and expresses all output using decimal representations with the
specified number of digits.

-D

Since all Nash equilibria involve only strategies which survive iterative elimination of strictly dominated strate-
gies, the program carries out the elimination automatically prior to computation. This is recommended, since
it almost always results in superior performance. Specifying -D skips the elimination step and performs the
enumeration on the full game.

-c

The program outputs the extreme equilibria as it finds them, prefixed by the tag NE . If this option is specified,
once all extreme equilbria are identified, the program computes the convex sets which make up the set of equi-
libria. The program then additionally outputs each convex set, prefixed by convex-N , where N indexes the set.
The set of all equilibria, then, is the union of these convex sets.

-h

Prints a help message listing the available options.

-q

Suppresses printing of the banner at program launch.

-L

Use lrslib by David Avis to carry out the enumeration process. This is an experimental feature that has not been
widely tested.

Computing the equilibria, in mixed strategies, of e02.nfg, the reduced strategic form of the example in Figure 2 of
Selten (International Journal of Game Theory, 1975):

$ gambit-enummixed e02.nfg
Compute Nash equilibria by enumerating extreme points
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
Enumeration code based on lrslib 4.2b,
Copyright (C) 1995-2005 by David Avis (avis@cs.mcgill.ca)
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0
NE,1,0,0,1/2,1/2

In fact, the game e02.nfg has a one-dimensional continuum of equilibria. This fact can be observed by examining the
connectedness information using the -c switch:

$ gambit-enummixed -c e02.nfg
Compute Nash equilibria by enumerating extreme points
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
Enumeration code based on lrslib 4.2b,
Copyright (C) 1995-2005 by David Avis (avis@cs.mcgill.ca)
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0
NE,1,0,0,1/2,1/2

(continues on next page)

2.2. gambit-enummixed: Enumerate equilibria in a two-player game 9

http://cgm.cs.mcgill.ca/~avis/C/lrs.html

Gambit Documentation, Release 16.1.1

(continued from previous page)

convex-1,1,0,0,1/2,1/2
convex-1,1,0,0,1,0

2.3 gambit-lcp: Compute equilibria in a two-player game via linear
complementarity

gambit-lcp reads a two-player game on standard input and computes Nash equilibria by finding solutions to a linear
complementarity problem. For extensive games, the program uses the sequence form representation of the extensive
game, as defined by Koller, Megiddo, and von Stengel [KolMegSte94], and applies the algorithm developed by Lemke.
For strategic games, the program using the method of Lemke and Howson [LemHow64]. There exist strategic games
for which some equilibria cannot be located by this method; see Shapley [Sha74].

In a two-player strategic game, the set of Nash equilibria can be expressed as the union of convex sets. This program
will find extreme points of those convex sets. See gambit-enummixed: Enumerate equilibria in a two-player game for
a method which is guaranteed to find all the extreme points for a strategic game.

-d

By default, this program computes using exact rational arithmetic. Since the extreme points computed by this
method are guaranteed to be rational when the payoffs in the game are rational, this permits exact computation
of the equilibrium set. Computation using rational arithmetic is in general slow, however. For most games,
acceptable results can be obtained by computing using the computer’s native floating-point arithmetic. Using
this flag enables computation in floating-point, and expresses all output using decimal representations with the
specified number of digits.

-S

By default, the program uses behavior strategies for extensive games; this switch instructs the program to use
reduced strategic game strategies for extensive games. (This has no effect for strategic games, since a strategic
game is its own reduced strategic game.)

-D

New in version 14.0.2.

The default output format for computed equilibria is a comma-separated list of strategy or action probabilities,
suitable for postprocessing by automated tools. Specifying -D instead causes the program to output greater detail
on each equilbrium profile computed.

-P

By default, the program computes Nash equilibria in an extensive game. This switch instructs the program to
find only equilibria which are subgame perfect. (This has no effect for strategic games, since there are no proper
subgames of a strategic game.)

-h

Prints a help message listing the available options.

-q

Suppresses printing of the banner at program launch.

Computing an equilibrium of extensive game e02.efg, the example in Figure 2 of Selten (International Journal of
Game Theory, 1975):

$ gambit-lcp e02.efg
Compute Nash equilibria by solving a linear complementarity program
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project

(continues on next page)

10 Chapter 2. Command-line tools

Gambit Documentation, Release 16.1.1

(continued from previous page)

This is free software, distributed under the GNU GPL

NE,1,0,1/2,1/2,1/2,1/2

2.4 gambit-lp: Compute equilibria in a two-player constant-sum
game via linear programming

gambit-lp reads a two-player constant-sum game on standard input and computes a Nash equilibrium by solving a
linear program. The program uses the sequence form formulation of Koller, Megiddo, and von Stengel [KolMegSte94]
for extensive games.

While the set of equilibria in a two-player constant-sum strategic game is convex, this method will only identify one of
the extreme points of that set.

-d

By default, this program computes using exact rational arithmetic. Since the extreme points computed by this
method are guaranteed to be rational when the payoffs in the game are rational, this permits exact computation of
an equilibrium. Computation using rational arithmetic is in general slow, however. For most games, acceptable
results can be obtained by computing using the computer’s native floating-point arithmetic. Using this flag
enables computation in floating-point, and expresses all output using decimal representations with the specified
number of digits.

-S

By default, the program uses behavior strategies for extensive games; this switch instructs the program to use
reduced strategic game strategies for extensive games. (This has no effect for strategic games, since a strategic
game is its own reduced strategic game.)

-D

New in version 14.0.3.

The default output format for computed equilibria is a comma-separated list of strategy or action probabilities,
suitable for postprocessing by automated tools. Specifying -D instead causes the program to output greater detail
on each equilbrium profile computed.

-P

By default, the program computes Nash equilibria in an extensive game. This switch instructs the program to
find only equilibria which are subgame perfect. (This has no effect for strategic games, since there are no proper
subgames of a strategic game.)

-h

Prints a help message listing the available options.

-q

Suppresses printing of the banner at program launch.

Computing an equilibrium of the game 2x2const.nfg, a game with two players with two strategies each, with a unique
equilibrium in mixed strategies:

$ gambit-lp 2x2const.nfg
Compute Nash equilibria by solving a linear program
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

(continues on next page)

2.4. gambit-lp: Compute equilibria in a two-player constant-sum game via linear programming 11

Gambit Documentation, Release 16.1.1

(continued from previous page)

NE,1/3,2/3,1/3,2/3

2.5 gambit-liap: Compute Nash equilibria using function minimiza-
tion

gambit-liap reads a game on standard input and computes approximate Nash equilibria using a function minimization
approach.

This procedure searches for equilibria by generating random starting points and using conjugate gradient descent to
minimize the Lyapunov function of the game. This function is a nonnegative function which is zero exactly at strategy
profiles which are Nash equilibria.

Note that this procedure is not globally convergent. That is, it is not guaranteed to find all, or even any, Nash equilibria.

-d

Express all output using decimal representations with the specified number of digits.

-n

Specify the number of starting points to randomly generate.

-i

New in version 16.1.1.

Specify the maximum number of iterations in function minimization (default is 100).

-h

Prints a help message listing the available options.

-q

Suppresses printing of the banner at program launch.

-s

Specifies a file containing a list of starting points for the algorithm. The format of the file is comma-separated
values, one mixed strategy profile per line, in the same format used for output of equilibria (excluding the initial
NE tag).

-S

By default, the program uses behavior strategies for extensive games; this switch instructs the program to use
reduced strategic game strategies for extensive games. (This has no effect for strategic games, since a strategic
game is its own reduced strategic game.)

-v

Sets verbose mode. In verbose mode, initial points, as well as points at which the minimization fails at a con-
strained local minimum that is not a Nash equilibrium, are all output, in addition to any equilibria found.

Computing an equilibrium in mixed strategies of e02.efg, the example in Figure 2 of Selten (International Journal of
Game Theory, 1975):

$ gambit-liap e02.nfg
Compute Nash equilibria by minimizing the Lyapunov function
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

(continues on next page)

12 Chapter 2. Command-line tools

Gambit Documentation, Release 16.1.1

(continued from previous page)

NE, 0.998701, 0.000229, 0.001070, 0.618833, 0.381167

2.6 gambit-simpdiv: Compute equilibria via simplicial subdivision

gambit-simpdiv reads a game on standard input and computes approximations to Nash equilibria using a simplicial
subdivision approach.

This program implements the algorithm of van der Laan, Talman, and van Der Heyden [VTH87]. The algorithm
proceeds by constructing a triangulated grid over the space of mixed strategy profiles, and uses a path-following method
to compute an approximate fixed point. This approximate fixed point can then be used as a starting point on a refinement
of the grid. The program continues this process with finer and finer grids until locating a mixed strategy profile at which
the maximum regret is small.

The algorithm begins with any mixed strategy profile consisting of rational numbers as probabilities. Without any
options, the algorithm begins with the centroid, and computes one Nash equilibrium. To attempt to compute other
equilibria that may exist, use the gambit-simpdiv -r or gambit-simpdiv -s options to specify additional starting
points for the algorithm.

-g

Sets the granularity of the grid refinement. By default, when the grid is refined, the stepsize is cut in half, which
corresponds to specifying -g 2. If this parameter is specified, the grid is refined at each step by a multiple of
MULT .

-h

Prints a help message listing the available options.

-n

Randomly generate COUNT starting points. Only applicable if option gambit-simpdiv -r is also specified.

-q

Suppresses printing of the banner at program launch.

-r

Generate random starting points with denominator DENOM. Since this algorithm operates on a grid, by its nature
the probabilities it works with are always rational numbers. If this parameter is specified, starting points for the
procedure are generated randomly using the uniform distribution over strategy profiles with probabilities having
denominator DENOM.

-s

Specifies a file containing a list of starting points for the algorithm. The format of the file is comma-separated
values, one mixed strategy profile per line, in the same format used for output of equilibria (excluding the initial
NE tag).

-v

Sets verbose mode. In verbose mode, initial points, as well as the approximations computed at each grid refine-
ment, are all output, in addition to the approximate equilibrium profile found.

Computing an equilibrium in mixed strategies of e02.efg, the example in Figure 2 of Selten (International Journal of
Game Theory, 1975):

$ gambit-simpdiv e02.nfg
Compute Nash equilibria using simplicial subdivision

(continues on next page)

2.6. gambit-simpdiv: Compute equilibria via simplicial subdivision 13

Gambit Documentation, Release 16.1.1

(continued from previous page)

Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0

2.7 gambit-logit: Compute quantal response equilbria

gambit-logit reads a game on standard input and computes the principal branch of the (logit) quantal response
correspondence.

The method is based on the procedure described in Turocy [Tur05] for strategic games and Turocy [Tur10] for exten-
sive games. It uses standard path-following methods (as described in Allgower and Georg’s “Numerical Continuation
Methods”) to adaptively trace the principal branch of the correspondence efficiently and securely.

The method used is a predictor-corrector method, which first generates a prediction using the differential equations
describing the branch of the correspondence, followed by a corrector step which refines the prediction using Newton’s
method for finding a zero of a function. Two parameters control the operation of this tracing. The option -s sets the
initial step size for the predictor phase of the tracing. This step size is then dynamically adjusted based on the rate
of convergence of Newton’s method in the corrector step. If the convergence is fast, the step size is adjusted upward
(accelerated); if it is slow, the step size is decreased (decelerated). The option -a sets the maximum acceleration (or
deceleration). As described in Turocy [Tur05], this acceleration helps to efficiently trace the correspondence when it
reaches its asymptotic phase for large values of the precision parameter lambda.

In extensive games, logit quantal response equilibria are not well-defined if an information set is not reached due to
being the successor of chance moves with zero probability. In such games, the implementation treats the beliefs at such
information sets as being uniform across all member nodes.

-d

Express all output using decimal representations with the specified number of digits. The default is -d 6.

-s

Sets the initial step size for the predictor phase of the tracing procedure. The default value is .03. The step size is
specified in terms of the arclength along the branch of the correspondence, and not the size of the step measured
in terms of lambda. So, for example, if the step size is currently .03, but the position of the strategy profile on the
branch is changing rapidly with lambda, then lambda will change by much less then .03 between points reported
by the program.

-a

Sets the maximum acceleration of the step size during the tracing procedure. This is interpreted as a multiplier.
The default is 1.1, which means the step size is increased or decreased by no more than ten percent of its current
value at every step. A value close to one would keep the step size (almost) constant at every step.

-m

Stop when reaching the specified value of the parameter lambda. By default, the tracing stops when lambda
reaches 1,000,000, which is usually suitable for computing a good approximation to a Nash equilibrium. For
applications, such as to laboratory experiments, where the behavior of the correspondence for small values of
lambda is of interest and the asymptotic behavior is not relevant, setting MAXLAMBDA to a much smaller value
may be indicated.

-l

While tracing, compute the logit equilibrium points with parameter LAMBDA accurately.

14 Chapter 2. Command-line tools

Gambit Documentation, Release 16.1.1

-S

By default, the program uses behavior strategies for extensive games; this switch instructs the program to use
reduced strategic game strategies for extensive games. (This has no effect for strategic games, since a strategic
game is its own reduced strategic game.)

-h

Prints a help message listing the available options.

-e

By default, all points computed are output by the program. If this switch is specified, only the approximation to
the Nash equilibrium at the end of the branch is output.

Computing the principal branch, in mixed strategies, of e02.nfg, the reduced strategic form of the example in Figure
2 of Selten (International Journal of Game Theory, 1975):

$ gambit-logit e02.nfg
Compute a branch of the logit equilibrium correspondence
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

0.000000,0.333333,0.333333,0.333333,0.5,0.5
0.022853,0.335873,0.328284,0.335843,0.501962,0.498038
0.047978,0.338668,0.322803,0.33853,0.504249,0.495751
0.075600,0.341747,0.316863,0.34139,0.506915,0.493085
0.105965,0.345145,0.310443,0.344413,0.510023,0.489977
0.139346,0.348902,0.303519,0.347578,0.51364,0.48636

...

735614.794714,1,0,4.40659e-11,0.500016,0.499984
809176.283787,1,0,3.66976e-11,0.500015,0.499985
890093.921767,1,0,3.05596e-11,0.500014,0.499986
979103.323545,1,0,2.54469e-11,0.500012,0.499988
1077013.665501,1,0,2.11883e-11,0.500011,0.499989

2.8 gambit-gnm: Compute Nash equilibria in a strategic game using a
global Newton method

gambit-gnm reads a game on standard input and computes Nash equilibria using a global Newton method approach
developed by Govindan and Wilson [GovWil03]. This program is a wrapper around the Gametracer 0.2 implementation
by Ben Blum and Christian Shelton.

-d

Express all output using decimal representations with the specified number of digits.

-h

Prints a help message listing the available options.

-n

Randomly generate the specified number of perturbation vectors.

-q

Suppresses printing of the banner at program launch.

2.8. gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method 15

http://dags.stanford.edu/Games/gametracer.html

Gambit Documentation, Release 16.1.1

-s

Specifies a file containing a list of starting points for the algorithm. The format of the file is comma-separated
values, one mixed strategy profile per line, in the same format used for output of equilibria (excluding the initial
NE tag).

-v

Show intermediate output of the algorithm. If this option is not specified, only the equilibria found are reported.

Computing an equilibrium of e02.nfg, the reduced strategic form of the example in Figure 2 of Selten (International
Journal of Game Theory, 1975):

$ gambit-gnm e02.nfg
Compute Nash equilibria using a global Newton method
Gametracer version 0.2, Copyright (C) 2002, Ben Blum and Christian Shelton
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,2.99905e-12,0.5,0.5

Note: This is an experimental program and has not been extensively tested.

See also:
gambit-ipa: Compute Nash equilibria in a strategic game using iterated polymatrix approximation.

2.9 gambit-ipa: Compute Nash equilibria in a strategic game using
iterated polymatrix approximation

gambit-ipa reads a game on standard input and computes Nash equilibria using an iterated polymatrix approximation
approach developed by Govindan and Wilson [GovWil04]. This program is a wrapper around the Gametracer 0.2
implementation by Ben Blum and Christian Shelton.

-d

Express all output using decimal representations with the specified number of digits.

-h

Prints a help message listing the available options.

-q

Suppresses printing of the banner at program launch.

Computing an equilibrium of e02.nfg, the reduced strategic form of the example in Figure 2 of Selten (International
Journal of Game Theory, 1975):

$ gambit-ipa e02.nfg
Compute Nash equilibria using iterated polymatrix approximation
Gametracer version 0.2, Copyright (C) 2002, Ben Blum and Christian Shelton
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1.000000,0.000000,0.000000,1.000000,0.000000

16 Chapter 2. Command-line tools

http://dags.stanford.edu/Games/gametracer.html

Gambit Documentation, Release 16.1.1

Note: This is an experimental program and has not been extensively tested.

See also:
gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method.

2.10 gambit-convert: Convert games among various representations

gambit-convert reads a game on standard input in any supported format and converts it to another text representation.
Currently, this tool supports outputting the strategic form of the game in one of these formats:

• A standard HTML table.

• A LaTeX fragment in the format of Martin Osborne’s sgame macros (see http://www.economics.utoronto.ca/
osborne/latex/index.html).

-O FORMAT

Required. Specifies the output format. Supported options for FORMAT are html or sgame.

-r PLAYER

Specifies the player number to place on the rows of the tables. The default if not specified is to place player 1 on
the rows.

-c PLAYER

Specifies the player number to place on the columns of the tables. The default if not specified is to place player
2 on the columns.

-h

Prints a help message listing the available options.

-q

Suppresses printing of the banner at program launch.

Example invocation for HTML output:

$ gambit-convert -O html 2x2.nfg
Convert games among various file formats
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

<center><h1>Two person 2 x 2 game with unique mixed equilibrium</h1></center>
<table><tr><td></td><td align=center>1</td><td
align=center>2</td></tr><tr><td align=center>1</td><td
align=center>2,0</td><td align=center>0,1</td></tr><tr><td
align=center>2</td><td align=center>0,1</td><td
align=center>1,0</td></tr></table>

Example invocation for LaTeX output:

$ gambit-convert -O sgame 2x2.nfg
Convert games among various file formats
Gambit version 16.1.1, Copyright (C) 1994-2023, The Gambit Project
This is free software, distributed under the GNU GPL

(continues on next page)

2.10. gambit-convert: Convert games among various representations 17

http://www.economics.utoronto.ca/osborne/latex/index.html
http://www.economics.utoronto.ca/osborne/latex/index.html

Gambit Documentation, Release 16.1.1

(continued from previous page)

\begin{game}{2}{2}[Player 1][Player 2]
&1 & 2\\
1 & $2,0$ & $0,1$ \\
2 & $0,1$ & $1,0$
\end{game}

18 Chapter 2. Command-line tools

CHAPTER

THREE

PYGAMBIT PYTHON PACKAGE

Gambit provides a Python package, pygambit, which provides access to Gambit’s features. pygambit is available on
PyPI (https://pypi.org/project/pygambit/), and can be installed via pip.

3.1 User guide

3.1.1 Example: One-shot trust game with binary actions

[Kre90] introduced a game commonly referred to as the trust game. We will build a one-shot version of this game
using pygambit’s game transformation operations.

There are two players, a Buyer and a Seller. The Buyer moves first and has two actions, Trust or Not trust. If the
Buyer chooses Not trust, then the game ends, and both players receive payoffs of 0. If the Buyer chooses Trust, then
the Seller has a choice with two actions, Honor or Abuse. If the Seller chooses Honor, both players receive payoffs
of 1; if the Seller chooses Abuse, the Buyer receives a payoff of -1 and the Seller receives a payoff of 2.

We create a game with an extensive representation using Game.new_tree():

In [1]: import pygambit as gbt

In [2]: g = gbt.Game.new_tree(players=["Buyer", "Seller"],
...: title="One-shot trust game, after Kreps (1990)")
...:

The tree of the game contains just a root node, with no children:

In [3]: g.root
Out[3]: <Node [0] '' in game 'One-shot trust game, after Kreps (1990)'>

In [4]: g.root.children
Out[4]: <pygambit.gambit.NodeChildren at 0x7f0837eb3550>

To extend a game from an existing terminal node, use Game.append_move():

In [5]: g.append_move(g.root, "Buyer", ["Trust", "Not trust"])

In [6]: g.root.children
Out[6]: <pygambit.gambit.NodeChildren at 0x7f0837eb3a70>

We can then also add the Seller’s move in the situation after the Buyer chooses Trust:

19

https://pypi.org/project/pygambit/

Gambit Documentation, Release 16.1.1

In [7]: g.append_move(g.root.children[0], "Seller", ["Honor", "Abuse"])

Now that we have the moves of the game defined, we add payoffs. Payoffs are associated with an Outcome; each
Outcome has a vector of payoffs, one for each player, and optionally an identifying text label. First we add the outcome
associated with the Seller proving themselves trustworthy:

In [8]: g.set_outcome(g.root.children[0].children[0], g.add_outcome([1, 1], label=
→˓"Trustworthy"))

Next, the outcome associated with the scenario where the Buyer trusts but the Seller does not return the trust:

In [9]: g.set_outcome(g.root.children[0].children[1], g.add_outcome([-1, 2], label=
→˓"Untrustworthy"))

And, finally the outcome associated with the Buyer opting out of the interaction:

In [10]: g.set_outcome(g.root.children[1], g.add_outcome([0, 0], label="Opt-out"))

Nodes without an outcome attached are assumed to have payoffs of zero for all players. Therefore, adding the outcome
to this latter terminal node is not strictly necessary in Gambit, but it is useful to be explicit for readability.

3.1.2 Example: A one-card poker game with private information

To illustrate games in extensive form, [Mye91] presents a one-card poker game. A version of this game also appears in
[RUW08], as a classroom game under the name “stripped-down poker”. This is perhaps the simplest interesting game
with imperfect information.

In our version of the game, there are two players, Alice and Bob. There is a deck of cards, with equal numbers of King
and Queen cards. The game begins with each player putting $1 in the pot. One card is dealt at random to Alice; Alice
observes her card but Bob does not. After Alice observes her card, she can choose either to Raise or to Fold. If she
chooses to Fold, Bob wins the pot and the game ends. If she chooses to Raise, she adds another $1 to the pot. Bob then
chooses either to Meet or Pass. If he chooses to Pass, Alice wins the pot and the game ends. If he chooses to Meet,
he adds another $1 to the pot. There is then a showdown, in which Alice reveals her card. If she has a King, then she
wins the pot; if she has a Queen, then Bob wins the pot.

We can build this game using the following script:

g = gbt.Game.new_tree(players=["Alice", "Bob"],
title="One card poker game, after Myerson (1991)")

g.append_move(g.root, g.players.chance, ["King", "Queen"])
for node in g.root.children:

g.append_move(node, "Alice", ["Raise", "Fold"])
g.append_move(g.root.children[0].children[0], "Bob", ["Meet", "Pass"])
g.append_infoset(g.root.children[1].children[0],

g.root.children[0].children[0].infoset)
alice_winsbig = g.add_outcome([2, -2], label="Alice wins big")
alice_wins = g.add_outcome([1, -1], label="Alice wins")
bob_winsbig = g.add_outcome([-2, 2], label="Bob wins big")
bob_wins = g.add_outcome([-1, 1], label="Bob wins")
g.set_outcome(g.root.children[0].children[0].children[0], alice_winsbig)
g.set_outcome(g.root.children[0].children[0].children[1], alice_wins)
g.set_outcome(g.root.children[0].children[1], bob_wins)
g.set_outcome(g.root.children[1].children[0].children[0], bob_winsbig)

(continues on next page)

20 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

(continued from previous page)

g.set_outcome(g.root.children[1].children[0].children[1], alice_wins)
g.set_outcome(g.root.children[1].children[1], bob_wins)

All extensive games have a chance (or nature) player, accessible as .Game.players.chance. Moves belonging to the
chance player can be added in the same way as to personal players. At any new move created for the chance player, the
action probabilities default to uniform randomization over the actions at the move.

In this game, information structure is important. Alice knows her card, so the two nodes at which she has the move are
part of different information sets. The loop:

for node in g.root.children:
g.append_move(node, "Alice", ["Raise", "Fold"])

causes each of the newly-appended moves to be in new information sets. In contrast, Bob does not know Alice’s card,
and therefore cannot distinguish between the two nodes at which he has the decision. This is implemented in the
following lines:

g.append_move(g.root.children[0].children[0], "Bob", ["Meet", "Pass"])
g.append_infoset(g.root.children[1].children[0],

g.root.children[0].children[0].infoset)

The call Game.append_infoset() adds a move at a terminal node as part of an existing information set (represented
in pygambit as an Infoset).

3.1.3 Building a strategic game

Games in strategic form, also referred to as normal form, are represented solely by a collection of payoff tables, one
per player. The most direct way to create a strategic game is via Game.from_arrays(). This function takes one n-
dimensional array per player, where n is the number of players in the game. The arrays can be any object that can be
indexed like an n-times-nested Python list; so, for example, numpy arrays can be used directly.

For example, to create a standard prisoner’s dilemma game in which the cooperative payoff is 8, the betrayal payoff is
10, the sucker payoff is 2, and the noncooperative payoff is 5:

In [11]: import numpy as np

In [12]: m = np.array([[8, 2], [10, 5]])

In [13]: g = gbt.Game.from_arrays(m, np.transpose(m))

In [14]: g
Out[14]:
NFG 1 R "Untitled strategic game" { "1" "2" }

{ { "1" "2" }
{ "1" "2" }
}
""

{
{ "" 8, 8 }
{ "" 10, 2 }
{ "" 2, 10 }

(continues on next page)

3.1. User guide 21

Gambit Documentation, Release 16.1.1

(continued from previous page)

{ "" 5, 5 }
}
1 2 3 4

The arrays passed to Game.from_arrays() are all indexed in the same sense, that is, the top level index is the choice
of the first player, the second level index of the second player, and so on. Therefore, to create a two-player symmetric
game, as in this example, the payoff matrix for the second player is transposed before passing to Game.from_arrays().

3.1.4 Representation of numerical data of a game

Payoffs to players and probabilities of actions at chance information sets are specified as numbers. Gambit represents
the numerical values in a game in exact precision, using either decimal or rational representations.

To illustrate, we consider a trivial game which just has one move for the chance player:

In [15]: import pygambit as gbt

In [16]: g = gbt.Game.new_tree()

In [17]: g.append_move(g.root, g.players.chance, ["a", "b", "c"])

In [18]: [act.prob for act in g.root.infoset.actions]
Out[18]: [Rational(1, 3), Rational(1, 3), Rational(1, 3)]

The default when creating a new move for chance is that all actions are chosen with equal probability. These proba-
bilities are represented as rational numbers, using pygambit’s Rational class, which is derived from Python’s frac-
tions.Fraction. Numerical data can be set as rational numbers:

In [19]: g.set_chance_probs(g.root.infoset,
....: [gbt.Rational(1, 4), gbt.Rational(1, 2), gbt.Rational(1, 4)])
....:

In [20]: [act.prob for act in g.root.infoset.actions]
Out[20]: [Rational(1, 4), Rational(1, 2), Rational(1, 4)]

They can also be explicitly specified as decimal numbers:

In [21]: g.set_chance_probs(g.root.infoset,
....: [gbt.Decimal(".25"), gbt.Decimal(".50"), gbt.Decimal(".25")])
....:

In [22]: [act.prob for act in g.root.infoset.actions]
Out[22]: [Decimal('0.25'), Decimal('0.50'), Decimal('0.25')]

Although the two representations above are mathematically equivalent, pygambit remembers the format in which the
values were specified.

Expressing rational or decimal numbers as above is verbose and tedious. pygambit offers a more concise way to express
numerical data in games: when setting numerical game data, pygambit will attempt to convert text strings to their
rational or decimal representation. The above can therefore be written more compactly using string representations:

In [23]: g.set_chance_probs(g.root.infoset, ["1/4", "1/2", "1/4"])

(continues on next page)

22 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

(continued from previous page)

In [24]: [act.prob for act in g.root.infoset.actions]
Out[24]: [Rational(1, 4), Rational(1, 2), Rational(1, 4)]

In [25]: g.set_chance_probs(g.root.infoset, [".25", ".50", ".25"])

In [26]: [act.prob for act in g.root.infoset.actions]
Out[26]: [Decimal('0.25'), Decimal('0.50'), Decimal('0.25')]

As a further convenience, pygambit will accept Python int and float values. int values are always interpreted as
Rational values. pygambit attempts to render float values in an appropriate Decimal equivalent. In the majority of
cases, this creates no problems. For example,

In [27]: g.set_chance_probs(g.root.infoset, [.25, .50, .25])

In [28]: [act.prob for act in g.root.infoset.actions]
Out[28]: [Decimal('0.25'), Decimal('0.5'), Decimal('0.25')]

However, rounding can cause difficulties when attempting to use float values to represent values which do not have an
exact decimal representation

In [29]: g.set_chance_probs(g.root.infoset, [1/3, 1/3, 1/3])

ValueError Traceback (most recent call last)
Cell In[29], line 1
----> 1 g.set_chance_probs(g.root.infoset, [1/3, 1/3, 1/3])

File src/pygambit/game.pxi:628, in pygambit.gambit.Game.set_chance_probs()

ValueError: set_chance_probs(): must specify non-negative probabilities that sum to one

This behavior can be slightly surprising, especially in light of the fact that in Python,

In [30]: 1/3 + 1/3 + 1/3
Out[30]: 1.0

In checking whether these probabilities sum to one, pygambit first converts each of the probabilitiesto a Decimal
representation, via the following method

In [31]: gbt.Decimal(str(1/3))
Out[31]: Decimal('0.3333333333333333')

and the sum-to-one check then fails because

In [32]: gbt.Decimal(str(1/3)) + gbt.Decimal(str(1/3)) + gbt.Decimal(str(1/3))
Out[32]: Decimal('0.9999999999999999')

Setting payoffs for players also follows the same rules. Representing probabilities and payoffs exactly is essential,
because pygambit offers (in particular for two-player games) the possibility of computation of equilibria exactly,
because the Nash equilibria of any two-player game with rational payoffs and chance probabilities can be expressed
exactly in terms of rational numbers.

It is therefore advisable always to specify the numerical data of games either in terms of Decimal or Rational values,
or their string equivalents. It is safe to use int values, but float values should be used with some care to ensure the
values are recorded as intended.

3.1. User guide 23

Gambit Documentation, Release 16.1.1

3.1.5 Reading a game from a file

Games stored in existing Gambit savefiles can be loaded using Game.read_game():

In [33]: g = gbt.Game.read_game("e02.nfg")

In [34]: g
Out[34]:
NFG 1 R "Selten (IJGT, 75), Figure 2, normal form" { "Player 1" "Player 2" }

{ { "1" "2" "3" }
{ "1" "2" }
}
""

{
{ "" 1, 1 }
{ "" 0, 2 }
{ "" 0, 2 }
{ "" 1, 1 }
{ "" 0, 3 }
{ "" 2, 0 }
}
1 2 3 4 5 6

3.1.6 Computing Nash equilibria

Interfaces to algorithms for computing Nash equilibria are provided in pygambit.nash.

Method Python function
gambit-enumpure pygambit.nash.enumpure_solve()
gambit-enummixed pygambit.nash.enummixed_solve()
gambit-lp pygambit.nash.lp_solve()
gambit-lcp pygambit.nash.lcp_solve()
gambit-liap pygambit.nash.liap_solve()
gambit-logit pygambit.nash.logit_solve()
gambit-simpdiv pygambit.nash.simpdiv_solve()
gambit-ipa pygambit.nash.ipa_solve()
gambit-gnm pygambit.nash.gnm_solve()

We take as an example the one-card poker game. This is a two-player, constant sum game, and so all of the equilibrium-
finding methods can be applied to it.

For two-player games, lcp_solve() can compute Nash equilibria directly using the extensive representation. Assum-
ing that g refers to the game

In [35]: eqa = gbt.nash.lcp_solve(g)

In [36]: eqa
Out[36]: [[[[Rational(1, 1), Rational(0, 1)], [Rational(1, 3), Rational(2, 3)]],␣
→˓[[Rational(2, 3), Rational(1, 3)]]]]

(continues on next page)

24 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

(continued from previous page)

In [37]: len(eqa)
Out[37]: 1

The result of the calculation is a list of MixedBehaviorProfile. A mixed behavior profile is a dict-like object which
specifies, for each information set, the probability distribution over actions at that information set, conditional on the
information set being reached. Indexing a MixedBehaviorProfile by a player gives the probability distributions over
each of that player’s information sets:

In [38]: eqa[0]["Alice"]
Out[38]: [[Rational(1, 1), Rational(0, 1)], [Rational(1, 3), Rational(2, 3)]]

In this case, at Alice’s first information set, the one at which she has the King, she always raises. At her second
information set, where she has the Queen, she sometimes bluffs, raising with probability one-third:

In [39]: [eqa[0]["Alice"][infoset]["Raise"] for infoset in g.players["Alice"].infosets]
Out[39]: [Rational(1, 1), Rational(1, 3)]

In larger games, labels may not always be the most convenient way to refer to specific actions. We can also index
profiles directly with Action objects. So an alternative way to extract the probabilities of playing “Raise” would be
by iterating Alice’s list of actions:

In [40]: [eqa[0][action] for action in g.players["Alice"].actions if action.label ==
→˓"Raise"]
Out[40]: [Rational(1, 1), Rational(1, 3)]

Looking at Bob’s strategy,

In [41]: eqa[0]["Bob"]
Out[41]: [[Rational(2, 3), Rational(1, 3)]]

Bob meets Alice’s raise two-thirds of the time. The label “Raise” is used in more than one information set for Alice, so
in the above we had to specify information sets when indexing. When there is no ambiguity, we can specify action labels
directly. So for example, because Bob has only one action named “Meet” in the game, we can extract the probability
that Bob plays “Meet” by:

In [42]: eqa[0]["Bob"]["Meet"]
Out[42]: Rational(2, 3)

Moreover, this is the only action with that label in the game, so we can index the profile directly using the action label
without any ambiguity:

In [43]: eqa[0]["Meet"]
Out[43]: Rational(2, 3)

Because this is an equilibrium, the fact that Bob randomizes at his information set must mean he is indifferent between
the two actions at his information set. MixedBehaviorProfile.action_value() returns the expected payoff of
taking an action, conditional on reaching that action’s information set:

In [44]: [eqa[0].action_value(action) for action in g.players["Bob"].infosets[0].actions]
Out[44]: [Rational(-1, 1), Rational(-1, 1)]

Bob’s indifference between his actions arises because of his beliefs given Alice’s strategy. MixedBehaviorProfile.
belief() returns the probability of reaching a node, conditional on its information set being reached:

3.1. User guide 25

Gambit Documentation, Release 16.1.1

In [45]: [eqa[0].belief(node) for node in g.players["Bob"].infosets[0].members]
Out[45]: [Rational(3, 4), Rational(1, 4)]

Bob believes that, conditional on Alice raising, there’s a 75% chance that she has the king; therefore, the expected
payoff to meeting is in fact -1 as computed. MixedBehaviorProfile.infoset_prob() returns the probability that
an information set is reached:

In [46]: eqa[0].infoset_prob(g.players["Bob"].infosets[0])
Out[46]: Rational(2, 3)

The corresponding probability that a node is reached in the play of the game is given by MixedBehaviorProfile.
realiz_prob(), and the expected payoff to a player conditional on reaching a node is given by
MixedBehaviorProfile.node_value().

In [47]: [eqa[0].node_value("Bob", node) for node in g.players["Bob"].infosets[0].
→˓members]
Out[47]: [Rational(-5, 3), Rational(1, 1)]

The overall expected payoff to a player given the behavior profile is returned by MixedBehaviorProfile.payoff():

In [48]: eqa[0].payoff("Alice")
Out[48]: Rational(1, 3)

In [49]: eqa[0].payoff("Bob")
Out[49]: Rational(-1, 3)

The equilibrium computed expresses probabilities in rational numbers. Because the numerical data of games in Gam-
bit are represented exactly, methods which are specialized to two-player games, lp_solve(), lcp_solve(), and
enummixed_solve(), can report exact probabilities for equilibrium strategy profiles. This is enabled by default for
these methods.

When a game has an extensive representation, equilibrium finding methods default to computing on that representation.
It is also possible to compute using the strategic representation. pygambit transparently computes the reduced strategic
form representation of an extensive game

In [50]: [s.label for s in g.players["Alice"].strategies]
Out[50]: ['11', '12', '21', '22']

In the strategic form of this game, Alice has four strategies. The generated strategy labels list the action numbers taken
at each information set. We can therefore apply a method which operates on a strategic game to any game with an
extensive representation

In [51]: eqa = gbt.nash.gnm_solve(g)

In [52]: eqa
Out[52]: [[[0.33333333333866655, 0.6666666666613332, 0.0, 0.0], [0.6666666666559998, 0.
→˓33333333334400017]]]

gnm_solve() can be applied to any game with any number of players, and uses a path-following process in floating-
point arithmetic, so it returns profiles with probabilities expressed as floating-point numbers. This method operates on
the strategic representation of the game, so the returned results are of type MixedStrategyProfile, and specify, for
each player, a probability distribution over that player’s strategies. Indexing a MixedStrategyProfile by a player
gives the probability distribution over that player’s strategies only.

26 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

In [53]: eqa[0]["Alice"]
Out[53]: [0.33333333333866655, 0.6666666666613332, 0.0, 0.0]

In [54]: eqa[0]["Bob"]
Out[54]: [0.6666666666559998, 0.33333333334400017]

The expected payoff to a strategy is provided by MixedStrategyProfile.strategy_value():

In [55]: [eqa[0].strategy_value(strategy) for strategy in g.players["Alice"].strategies]
Out[55]: [0.3333333333440002, 0.33333333332799997, -0.9999999999839999, -1.0]

In [56]: [eqa[0].strategy_value(strategy) for strategy in g.players["Bob"].strategies]
Out[56]: [-0.3333333333306668, -0.3333333333386666]

The overall expected payoff to a player is returned by MixedStrategyProfile.payoff():

In [57]: eqa[0].payoff("Alice")
Out[57]: 0.3333333333333334

In [58]: eqa[0].payoff("Bob")
Out[58]: -0.3333333333333334

When a game has an extensive representation, we can convert freely between MixedStrategyProfile and the
corresponding MixedBehaviorProfile representation of the same strategies using MixedStrategyProfile.
as_behavior() and MixedBehaviorProfile.as_strategy().

In [59]: eqa[0].as_behavior()
Out[59]: [[[1.0, 0.0], [0.3333333333386666, 0.6666666666613333]], [[0.6666666666559998,␣
→˓0.33333333334400017]]]

In [60]: eqa[0].as_behavior().as_strategy()
Out[60]: [[0.3333333333386666, 0.6666666666613333, 0.0, 0.0], [0.6666666666559998, 0.
→˓33333333334400017]]

3.1.7 Estimating quantal response equilibria

Alongside computing quantal response equilibria, Gambit can also perform maximum likelihood estimation, computing
the QRE which best fits an empirical distribution of play.

As an example we consider an asymmetric matching pennies game studied in [Och95], analysed in [McKPal95] using
QRE.

In [61]: g = gbt.Game.from_arrays(
....: [[1.1141, 0], [0, 0.2785]],
....: [[0, 1.1141], [1.1141, 0]],
....: title="Ochs (1995) asymmetric matching pennies as transformed in McKelvey-

→˓Palfrey (1995)"
....:)
....:

In [62]: data = g.mixed_strategy_profile([[128*0.527, 128*(1-0.527)], [128*0.366, 128*(1-
→˓0.366)]])

3.1. User guide 27

Gambit Documentation, Release 16.1.1

Estimation of QRE is done using fit_fixedpoint().

In [63]: fit = gbt.qre.fit_fixedpoint(data)

The returned LogitQREMixedStrategyFitResult object contains the results of the estimation. The results replicate
those reported in [McKPal95], including the estimated value of lambda, the QRE profile probabilities, and the log-
likelihood. Because data contains the empirical counts of play, and not just frequencies, the resulting log-likelihood is
correct for use in likelihoood-ratio tests.1

In [64]: print(fit.lam)
1.8456097536855864

In [65]: print(fit.profile)
[[0.615651314427859, 0.3843486855721409], [0.3832909400456291, 0.616709059954371]]

In [66]: print(fit.log_like)
-174.76453191087444

3.2 API documentation

3.2.1 Representation of games

Game A game, the fundamental unit of analysis in game theory.
Player A player in a Game.
Outcome An outcome in a Game.
Node A node in a Game.
Infoset An information set in a Game.
Action A choice available at an Infoset in a Game.
Strategy A plan of action for a Player in a Game.

pygambit.gambit.Game

class pygambit.gambit.Game

A game, the fundamental unit of analysis in game theory.

Games may be represented in extensive or strategic form.

Methods

add_action(infoset[, before]) Add an action at the information set infoset.
add_outcome([payoffs, label]) Add a new outcome to the game.
add_player([label]) Add a new player to the game.
add_strategy(player[, label]) Add a new strategy to the set of strategies for player.
append_infoset(node, infoset) Add a move in information set infoset at the terminal

node node.
append_move(node, player, actions) Add a move for player at the terminal node node.

continues on next page
1 The log-likelihoods quoted in [McKPal95] are exactly a factor of 10 larger than those obtained by replicating the calculation.

28 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

Table 1 – continued from previous page
copy_tree(src, dest) Copy the subtree rooted at 'src' to 'dest'.
delete_action(action) Deletes action from its information set.
delete_outcome(outcome) Delete an outcome from the game.
delete_parent(node) Delete the parent node of node.
delete_strategy(strategy) Delete strategy from the game.
delete_tree(node) Truncate the game tree at node, deleting the subtree

beneath it.
from_arrays(*arrays[, title]) Create a new Game with a strategic representation.
from_dict(payoffs[, title]) Create a new Game with a strategic representation.
insert_infoset(node, infoset) Insert a move in information set infoset prior to the

node node.
insert_move(node, player, actions) Insert a move for player prior to the node node, with

actions actions.
leave_infoset(node) Remove this node from its information set.
mixed_behavior_profile([rational]) Create a behavior strategy profile over the game.
mixed_strategy_profile([data, rational]) Create a mixed strategy profile over the game.
move_tree(src, dest) Move the subtree rooted at 'src' to 'dest'.
new_table(dim[, title]) Create a new Game with a strategic representation.
new_tree([players, title]) Create a new Game consisting of a trivial game tree,

with one node, which is both root and terminal.
nodes([subtree]) Return a list of nodes in the game tree.
parse_game(text) Construct a game from its serialised representation in

a string
read_game(filepath) Construct a game from its serialised representation in

a file.
reveal(infoset, player) Reveals the move made at infoset to player.
set_chance_probs(infoset, probs) Set the action probabilities at chance information set

infoset.
set_infoset(node, infoset) Place node in the information set infoset.
set_outcome(node, outcome) Set outcome to be the outcome at node.
set_player(infoset, player) Set the player at an information set.
support_profile()

write([format]) Produce a serialization of the game.

3.2. API documentation 29

Gambit Documentation, Release 16.1.1

Attributes

actions The set of actions available in the game.
comment Get or set the comment of the game.
contingencies An iterator over the contingencies in the game.
infosets The set of information sets in the game.
is_const_sum Whether the game is constant sum.
is_perfect_recall Whether the game is perfect recall.
is_tree Return whether a game has a tree-based representa-

tion.
max_payoff The maximum payoff in the game.
min_payoff The minimum payoff in the game.
outcomes The set of outcomes in the game.
players The set of players in the game.
root The root node of the game.
strategies The set of strategies in the game.
title Get or set the title of the game.

pygambit.gambit.Player

class pygambit.gambit.Player

A player in a Game.

Methods

Attributes

actions Returns the set of actions available to the player at
some information set.

game Gets the Game to which the player belongs.
infosets Returns the set of information sets at which the player

has the decision.
is_chance Returns whether the player is the chance player.
label Gets or sets the text label of the player.
max_payoff Returns the largest payoff for the player in any out-

come of the game.
min_payoff Returns the smallest payoff for the player in any out-

come of the game.
number Returns the number of the player in its game.
strategies Returns the set of strategies belonging to the player.

30 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.Outcome

class pygambit.gambit.Outcome

An outcome in a Game.

Methods

delete() Deletes the outcome from its game.

Attributes

game Returns the game with which this outcome is associ-
ated.

label The text label associated with this outcome.

pygambit.gambit.Node

class pygambit.gambit.Node

A node in a Game.

Methods

append_move(player[, actions]) Add a move to a terminal node, at the Infoset infoset.
copy_tree(node) Copies the subtree rooted at this node to node.
delete_parent() Deletes the parent node of this node, and all subtrees

rooted in the parent other than the one containing this
node.

delete_tree() Deletes the entire subtree rooted at this node.
insert_move(player[, actions]) Insert a move at a node, at the Infoset infoset.
is_successor_of (node) Returns whether this node is a successor of node.
move_tree(node) Moves the subtree rooted at this node to node.

3.2. API documentation 31

Gambit Documentation, Release 16.1.1

Attributes

children The set of children of this node.
game Gets the Game to which the node belongs.
infoset The information set to which this node belongs.
is_subgame_root Returns whether the node is the root of a proper sub-

game.
is_terminal Returns whether this is a terminal node of the game.
label The text label associated with the node.
next_sibling The node which is immediately after this one in its

parent's children.
outcome Returns the outcome attached to the node.
parent The parent of this node.
player The player who makes the decision at this node.
prior_action The action which leads to this node.
prior_sibling The node which is immediately before this one in its

parent's children.

pygambit.gambit.Infoset

class pygambit.gambit.Infoset

An information set in a Game.

Methods

precedes(node) Return whether this information set precedes node in
the game tree.

reveal(player) Reveal the move made at the information set to
player.

Attributes

actions The set of actions at the information set.
game The Game to which the information set belongs.
is_chance Whether the information set belongs to the chance

player.
label Get or set the text label of the information set.
members The set of nodes which are members of the informa-

tion set.
player The player who has the move at this information set.

32 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.Action

class pygambit.gambit.Action

A choice available at an Infoset in a Game.

Methods

delete() Deletes this action from its information set.
precedes(node) Returns whether node precedes this action in the ex-

tensive game.

Attributes

infoset Get the information set to which the action belongs.
label Get or set the text label of the action.
prob Get the probability a chance action is played.

pygambit.gambit.Strategy

class pygambit.gambit.Strategy

A plan of action for a Player in a Game.

Methods

Attributes

game The game to which the strategy belongs.
label Get or set the text label associated with the strategy.
number The number of the strategy.
player The player to which the strategy belongs.

3.2. API documentation 33

Gambit Documentation, Release 16.1.1

Creating, reading, and writing games

Game.new_tree([players, title]) Create a new Game consisting of a trivial game tree, with
one node, which is both root and terminal.

Game.new_table(dim[, title]) Create a new Game with a strategic representation.
Game.from_arrays(*arrays[, title]) Create a new Game with a strategic representation.
Game.from_dict(payoffs[, title]) Create a new Game with a strategic representation.
Game.read_game(filepath) Construct a game from its serialised representation in a

file.
Game.parse_game(text) Construct a game from its serialised representation in a

string
Game.write([format]) Produce a serialization of the game.

pygambit.gambit.Game.new_tree

classmethod Game.new_tree(players: List[str] | None = None, title: str = 'Untitled extensive game')→ Game
Create a new Game consisting of a trivial game tree, with one node, which is both root and terminal.

Changed in version 16.1.0: Added the players and title parameters

Parameters
• players (list of str, optional) – A list of labels for the (strategic) players of the

game. If players is not specified, the game initially has no players defined other than the
chance player.

• title (str, optional) – The title of the game. If no title is specified, “Untitled extensive
game” is used.

Returns
The newly-created extensive game.

Return type
Game

pygambit.gambit.Game.new_table

classmethod Game.new_table(dim, title: str = 'Untitled strategic game')→ Game
Create a new Game with a strategic representation.

Changed in version 16.1.0: Added the title parameter.

Parameters
• dim (array-like) – A list specifying the number of strategies for each player.

• title (str, optional) – The title of the game. If no title is specified, “Untitled strategic
game” is used.

Returns
The newly-created strategic game.

Return type
Game

34 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.from_arrays

classmethod Game.from_arrays(*arrays, title: str = 'Untitled strategic game')→ Game
Create a new Game with a strategic representation.

Each entry in arrays gives the payoff matrix for the corresponding player. The arrays must all have the same
shape, and have the same number of dimensions as the total number of players.

Changed in version 16.1.0: Added the title parameter.

Parameters
• arrays (array-like of array-like) – The payoff matrices for the players.

• title (str, optional) – The title of the game. If no title is specified, “Untitled strategic
game” is used.

Returns
The newly-created strategic game.

Return type
Game

See also:

from_dict
Create strategic game and set player labels

pygambit.gambit.Game.from_dict

classmethod Game.from_dict(payoffs, title: str = 'Untitled strategic game')→ Game
Create a new Game with a strategic representation.

Each entry in payoffs is a key-value pair giving the label and the payoff matrix for a player. The payoff matrices
must all have the same shape, and have the same number of dimensions as the total number of players.

Parameters
• payoffs (dict-like mapping str to array-like) – The names and corresponding

payoff matrices for the players.

• title (str, optional) – The title of the game. If no title is specified, “Untitled strategic
game” is used.

Returns
The newly-created strategic game.

Return type
Game

See also:

from_arrays
Create game from list-like of array-like

3.2. API documentation 35

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.read_game

classmethod Game.read_game(filepath: str | Path)→ Game
Construct a game from its serialised representation in a file.

Parameters
filepath (str or path object) – The path to the file containing the game representation.

Returns
A game constructed from the representation in the file.

Return type
Game

Raises
• IOError – If the file cannot be opened or read

• ValueError – If the contents of the file are not a valid game representation.

See also:

parse_game
Constructs a game from a text string.

pygambit.gambit.Game.parse_game

classmethod Game.parse_game(text: str)→ Game
Construct a game from its serialised representation in a string

Parameters
text (str) – A string containing the game representation.

Returns
A game constructed from the representation in the string.

Return type
Game

Raises
ValueError – If the contents of the file are not a valid game representation.

See also:

read_game
Constructs a game from a representation in a file.

pygambit.gambit.Game.write

Game.write(format='native')→ str
Produce a serialization of the game.

Several output formats are supported, depending on the representation of the game.

• efg: A representation of the game in the .efg extensive game file format. Not available for games in strategic
representation.

36 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

• nfg: A representation of the game in the .nfg strategic game file format. For an extensive game, this uses
the reduced strategic form representation.

• gte: The XML representation used by the Game Theory Explorer tool. Only available for extensive games.

• native: The format most appropriate to the underlying representation of the game, i.e., efg or nfg.

This method also supports exporting to other output formats (which cannot be used directly to re-load the game
later, but are suitable for human consumption, inclusion in papers, and so on).

• html: A rendering of the strategic form of the game as a collection of HTML tables. The first player is the
row chooser; the second player the column chooser. For games with more than two players, a collection of
tables is generated, one for each possible strategy combination of players 3 and higher.

• sgame: A rendering of the strategic form of the game in LaTeX, suitable for use with Martin Osborne’s
sgame style. The first player is the row chooser; the second player the column chooser. For games with
more than two players, a collection of tables is generated, one for each possible strategy combination of
players 3 and higher.

Transforming game trees

Game.append_move(node, player, actions) Add a move for player at the terminal node node.
Game.append_infoset(node, infoset) Add a move in information set infoset at the terminal

node node.
Game.insert_move(node, player, actions) Insert a move for player prior to the node node, with ac-

tions actions.
Game.insert_infoset(node, infoset) Insert a move in information set infoset prior to the node

node.
Game.copy_tree(src, dest) Copy the subtree rooted at 'src' to 'dest'.
Game.move_tree(src, dest) Move the subtree rooted at 'src' to 'dest'.
Game.delete_parent(node) Delete the parent node of node.
Game.delete_tree(node) Truncate the game tree at node, deleting the subtree be-

neath it.

pygambit.gambit.Game.append_move

Game.append_move(node: Node | str, player: Player | str, actions: List[str])→ None
Add a move for player at the terminal node node. node becomes part of a new information set, with actions
labeled according to actions.

Raises
• UndefinedOperationError – If node is not a terminal node, or actions is not a positive

number.

• MismatchError – If node is a Node from a different game, or player is a Player from a
different game.

3.2. API documentation 37

https://www.economics.utoronto.ca/osborne/latex/
https://www.economics.utoronto.ca/osborne/latex/

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.append_infoset

Game.append_infoset(node: Node | str, infoset: Infoset | str)→ None
Add a move in information set infoset at the terminal node node.

Raises
• UndefinedOperationError – If node is not a terminal node.

• MismatchError – If node is a Node from a different game, or infoset is an Infoset from a
different game.

pygambit.gambit.Game.insert_move

Game.insert_move(node: Node | str, player: Player | str, actions: int)→ None
Insert a move for player prior to the node node, with actions actions. node becomes the first child of the newly-
inserted node.

Raises
• UndefinedOperationError – If actions is not a positive number.

• MismatchError – If node is a Node from a different game, or player is a Player from a
different game.

pygambit.gambit.Game.insert_infoset

Game.insert_infoset(node: Node | str, infoset: Infoset | str)→ None
Insert a move in information set infoset prior to the node node. node becomes the first child of the newly-inserted
node.

Raises
MismatchError – If node is a Node from a different game, or infoset is an Infoset from a different
game.

pygambit.gambit.Game.copy_tree

Game.copy_tree(src: Node | str, dest: Node | str)→ None
Copy the subtree rooted at ‘src’ to ‘dest’.

Parameters
• src (Node or str) – The root of the source subtree to copy

• dest (Node or str) – The destination subtree to copy to. dest must be a terminal node.

Raises
• MismatchError – If src or dest is not a member of the same game as this node.

• UndefinedOperationError – If dest is not a terminal node.

38 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.move_tree

Game.move_tree(src: Node | str, dest: Node | str)→ None
Move the subtree rooted at ‘src’ to ‘dest’.

Parameters
• src (Node or str) – The root of the source subtree to move

• dest (Node or str) – The destination subtree to move to. dest must be a terminal node.

Raises
• MismatchError – If src or dest is not a member of the same game as this node.

• UndefinedOperationError – If dest is not a terminal node, or dest is a successor of src.

pygambit.gambit.Game.delete_parent

Game.delete_parent(node: Node | str)→ None
Delete the parent node of node. node replaces its parent in the tree. All other subtrees rooted at node’s parent
are deleted.

Parameters
node (Node or str) – The node to retain after deleting its parent. If a string is passed, the node
is determined by finding the node with that label, if any.

Raises
MismatchError – If node is a Node from a different game.

pygambit.gambit.Game.delete_tree

Game.delete_tree(node: Node | str)→ None
Truncate the game tree at node, deleting the subtree beneath it.

Parameters
node (Node or str) – The node to truncate the game at. If a string is passed, the node is
determined by finding the node with that label, if any.

Raises
MismatchError – If node is a Node from a different game.

Transforming game information structure

Game.set_player(infoset, player) Set the player at an information set.
Game.set_infoset(node, infoset) Place node in the information set infoset.
Game.leave_infoset(node) Remove this node from its information set.
Game.reveal(infoset, player) Reveals the move made at infoset to player.
Game.set_chance_probs(infoset, probs) Set the action probabilities at chance information set in-

foset.

3.2. API documentation 39

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.set_player

Game.set_player(infoset: Infoset | str, player: Player | str)→ None
Set the player at an information set.

Parameters
• infoset (Infoset or str) – The information set to assign to the player

• player (Player or str) – The player to have the move at the information set

Raises
MismatchError – If infoset is an Infoset from another game, or player is a Player from another
game.

pygambit.gambit.Game.set_infoset

Game.set_infoset(node: Node | str, infoset: Infoset | str)→ None
Place node in the information set infoset. node must have the same number of descendants as infoset has actions.

Parameters
• node (Node or str) – The node to set the information set

• infoset (Infoset or str) – The information set to join

Raises
MismatchError – If node is a Node from a different game, or infoset is an Infoset from a different
game.

pygambit.gambit.Game.leave_infoset

Game.leave_infoset(node: Node | str)
Remove this node from its information set. If this node is the only node in its information set, this operation has
no effect.

Parameters
node (Node or str) – The node to move to a new singleton information set.

pygambit.gambit.Game.reveal

Game.reveal(infoset: Infoset | str, player: Player | str)→ None
Reveals the move made at infoset to player.

Revealing the move modifies all subsequent information sets for player such that any two nodes which are suc-
cessors of two different actions at this information set are placed in different information sets for player.

Revelation is a one-shot operation; it is not enforced with respect to any revisions made to the game tree subse-
quently.

Parameters
• infoset (Infoset or str) – The information set of the move to reveal to the player

• player (Player or str) – The player to which to reveal the move at this information set.

40 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

Raises
MismatchError – If infoset is an Infoset from a different game, or player is a Player from a
different game.

pygambit.gambit.Game.set_chance_probs

Game.set_chance_probs(infoset: Infoset | str, probs: Sequence)
Set the action probabilities at chance information set infoset.

Parameters
• infoset (Infoset or str) – The chance information set at which to set the action prob-

abilities. If a string is passed, the information set is determined by finding the chance infor-
mation set with that label, if any.

• probs (array-like) – The action probabilities to set

Raises
• MismatchError – If infoset is not an information set in this game

• UndefinedOperationError – If infoset is not an information set of the chance player

• IndexError – If the length of probs is not the same as the number of actions at the infor-
mation set

• ValueError – If any of the elements of probs are not interpretable as numbers, or the values
of probs are not non-negative numbers that sum to exactly one.

Transforming game components

Game.add_player([label]) Add a new player to the game.
Game.add_outcome([payoffs, label]) Add a new outcome to the game.
Game.delete_outcome(outcome) Delete an outcome from the game.
Game.set_outcome(node, outcome) Set outcome to be the outcome at node.
Game.add_strategy(player[, label]) Add a new strategy to the set of strategies for player.
Game.delete_strategy(strategy) Delete strategy from the game.

pygambit.gambit.Game.add_player

Game.add_player(label: str = '')→ Player
Add a new player to the game.

Parameters
label (str, default "") – The label for the player.

Returns
A reference to the newly-created player.

Return type
Player

3.2. API documentation 41

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.add_outcome

Game.add_outcome(payoffs: List | None = None, label: str = '')→ Outcome
Add a new outcome to the game.

Parameters
• payoffs (list, optional) – The payoffs of the outcome to each player.

• label (str, default "") – The label for the outcome

Raises
ValueError – If payoffs is specified but is not the same length as the number of players in the
game.

Returns
A reference to the newly-created outcome.

Return type
Outcome

pygambit.gambit.Game.delete_outcome

Game.delete_outcome(outcome: Outcome | str)→ None
Delete an outcome from the game.

If this game is an extensive game, any node at which this outcome is attached has its outcome reset to null. If
this game is a strategic game, any contingency at which this outcome is attached as its outcome reset to null.

Parameters
outcome (Outcome or str) – The outcome to delete from the game

Raises
MismatchError – If outcome is an Outcome from another game.

pygambit.gambit.Game.set_outcome

Game.set_outcome(node: Node | str, outcome: Outcome | str | None)→ None
Set outcome to be the outcome at node. If outcome is None, the outcome at node is unset.

Parameters
• node (Node or str) – The node to set the outcome at

• outcome (Outcome or str or None) – The outcome to assign to the node

Raises
MismatchError – If node is a Node from a different game, or outcome is an Outcome from a
different game.

42 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.add_strategy

Game.add_strategy(player: Player | str, label: str | None = None)→ Strategy
Add a new strategy to the set of strategies for player.

Parameters
• player (Player or str) – The player to create the new strategy for

• label (str, optional) – The label to assign to the new strategy

Returns
The newly-created strategy

Return type
Strategy

Raises
• MismatchError – If player is a Player from a different game.

• UndefinedOperationError – If called on a game which has an extensive representation.

pygambit.gambit.Game.delete_strategy

Game.delete_strategy(strategy: Strategy | str)→ None
Delete strategy from the game.

Parameters
strategy (Strategy or str) – The strategy to delete

Raises
• MismatchError – If strategy is a strategy from a different game.

• UndefinedOperationError – If called on a game which has an extensive representation,
or if strategy is the only strategy for its player.

Information about the game

Game.title Get or set the title of the game.
Game.comment Get or set the comment of the game.
Game.is_const_sum Whether the game is constant sum.
Game.is_tree Return whether a game has a tree-based representation.
Game.is_perfect_recall Whether the game is perfect recall.
Game.players The set of players in the game.
Game.outcomes The set of outcomes in the game.
Game.min_payoff The minimum payoff in the game.
Game.max_payoff The maximum payoff in the game.
Game.strategies The set of strategies in the game.
Game.root The root node of the game.
Game.actions The set of actions available in the game.
Game.infosets The set of information sets in the game.
Game.nodes([subtree]) Return a list of nodes in the game tree.
Game.contingencies An iterator over the contingencies in the game.

3.2. API documentation 43

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.title

Game.title

Get or set the title of the game.

The title of the game is an arbitrary string, generally intended to be short.

pygambit.gambit.Game.comment

Game.comment

Get or set the comment of the game.

A game’s comment is an arbitrary string, and may be more discursive than a title.

pygambit.gambit.Game.is_const_sum

Game.is_const_sum

Whether the game is constant sum.

pygambit.gambit.Game.is_tree

Game.is_tree

Return whether a game has a tree-based representation.

pygambit.gambit.Game.is_perfect_recall

Game.is_perfect_recall

Whether the game is perfect recall.

By convention, games with a strategic representation have perfect recall as they are treated as simultaneous-move
games.

pygambit.gambit.Game.players

Game.players

The set of players in the game.

pygambit.gambit.Game.outcomes

Game.outcomes

The set of outcomes in the game.

44 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.min_payoff

Game.min_payoff

The minimum payoff in the game.

pygambit.gambit.Game.max_payoff

Game.max_payoff

The maximum payoff in the game.

pygambit.gambit.Game.strategies

Game.strategies

The set of strategies in the game.

pygambit.gambit.Game.root

Game.root

The root node of the game.

Raises
UndefinedOperationError – If the game does not hae a tree representation.

pygambit.gambit.Game.actions

Game.actions

The set of actions available in the game.

Raises
UndefinedOperationError – If the game does not have a tree representation.

pygambit.gambit.Game.infosets

Game.infosets

The set of information sets in the game.

Raises
UndefinedOperationError – If the game does not have a tree representation.

3.2. API documentation 45

Gambit Documentation, Release 16.1.1

pygambit.gambit.Game.nodes

Game.nodes(subtree: Node | str | None = None)→ List[Node]
Return a list of nodes in the game tree. If subtree is not None, returns the nodes in the subtree rooted at that node.

Nodes are returned in prefix-traversal order: a node appears prior to the list of nodes in the subtrees rooted at the
node’s children.

Parameters
subtree (Node or str, optional) – If specified, return only the nodes in the subtree rooted
at subtree.

Raises
MismatchError – If node is a Node from a different game.

pygambit.gambit.Game.contingencies

Game.contingencies

An iterator over the contingencies in the game.

Player.label Gets or sets the text label of the player.
Player.number Returns the number of the player in its game.
Player.game Gets the Game to which the player belongs.
Player.strategies Returns the set of strategies belonging to the player.
Player.infosets Returns the set of information sets at which the player

has the decision.
Player.actions Returns the set of actions available to the player at some

information set.
Player.is_chance Returns whether the player is the chance player.
Player.min_payoff Returns the smallest payoff for the player in any outcome

of the game.
Player.max_payoff Returns the largest payoff for the player in any outcome

of the game.
Player.strategies Returns the set of strategies belonging to the player.

pygambit.gambit.Player.label

Player.label

Gets or sets the text label of the player.

pygambit.gambit.Player.number

Player.number

Returns the number of the player in its game. Players are numbered starting with 0.

46 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.Player.game

Player.game

Gets the Game to which the player belongs.

pygambit.gambit.Player.strategies

Player.strategies

Returns the set of strategies belonging to the player.

pygambit.gambit.Player.infosets

Player.infosets

Returns the set of information sets at which the player has the decision.

pygambit.gambit.Player.actions

Player.actions

Returns the set of actions available to the player at some information set.

pygambit.gambit.Player.is_chance

Player.is_chance

Returns whether the player is the chance player.

pygambit.gambit.Player.min_payoff

Player.min_payoff

Returns the smallest payoff for the player in any outcome of the game.

pygambit.gambit.Player.max_payoff

Player.max_payoff

Returns the largest payoff for the player in any outcome of the game.

Outcome.label The text label associated with this outcome.
Outcome.game Returns the game with which this outcome is associated.

3.2. API documentation 47

Gambit Documentation, Release 16.1.1

pygambit.gambit.Outcome.label

Outcome.label

The text label associated with this outcome.

pygambit.gambit.Outcome.game

Outcome.game

Returns the game with which this outcome is associated.

Node.label The text label associated with the node.
Node.game Gets the Game to which the node belongs.
Node.outcome Returns the outcome attached to the node.
Node.children The set of children of this node.
Node.parent The parent of this node.
Node.is_subgame_root Returns whether the node is the root of a proper sub-

game.
Node.is_terminal Returns whether this is a terminal node of the game.
Node.prior_action The action which leads to this node.
Node.prior_sibling The node which is immediately before this one in its par-

ent's children.
Node.next_sibling The node which is immediately after this one in its par-

ent's children.
Node.infoset The information set to which this node belongs.
Node.player The player who makes the decision at this node.
Node.is_successor_of (node) Returns whether this node is a successor of node.

pygambit.gambit.Node.label

Node.label

The text label associated with the node.

pygambit.gambit.Node.game

Node.game

Gets the Game to which the node belongs.

pygambit.gambit.Node.outcome

Node.outcome

Returns the outcome attached to the node.

If no outcome is attached to the node, None is returned.

48 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.Node.children

Node.children

The set of children of this node.

pygambit.gambit.Node.parent

Node.parent

The parent of this node.

If this is the root node, None is returned.

pygambit.gambit.Node.is_subgame_root

Node.is_subgame_root

Returns whether the node is the root of a proper subgame.

Changed in version 16.1.0: Changed to being a property instead of a member function.

pygambit.gambit.Node.is_terminal

Node.is_terminal

Returns whether this is a terminal node of the game.

pygambit.gambit.Node.prior_action

Node.prior_action

The action which leads to this node.

If this is the root node, None is returned.

pygambit.gambit.Node.prior_sibling

Node.prior_sibling

The node which is immediately before this one in its parent’s children.

If this is the root node or the first child of its parent, None is returned.

pygambit.gambit.Node.next_sibling

Node.next_sibling

The node which is immediately after this one in its parent’s children.

If this is the root node or the last child of its parent, None is returned.

3.2. API documentation 49

Gambit Documentation, Release 16.1.1

pygambit.gambit.Node.infoset

Node.infoset

The information set to which this node belongs.

If this is a terminal node, which belongs to no information set, None is returned.

pygambit.gambit.Node.player

Node.player

The player who makes the decision at this node.

If this is a terminal node, None is returned.

pygambit.gambit.Node.is_successor_of

Node.is_successor_of(node: Node)→ bool
Returns whether this node is a successor of node.

Infoset.label Get or set the text label of the information set.
Infoset.game The Game to which the information set belongs.
Infoset.is_chance Whether the information set belongs to the chance

player.
Infoset.player The player who has the move at this information set.
Infoset.actions The set of actions at the information set.
Infoset.members The set of nodes which are members of the information

set.
Infoset.precedes(node) Return whether this information set precedes node in the

game tree.

Action.label Get or set the text label of the action.
Action.infoset Get the information set to which the action belongs.
Action.precedes(node) Returns whether node precedes this action in the exten-

sive game.
Action.prob Get the probability a chance action is played.

Strategy.label Get or set the text label associated with the strategy.
Strategy.game The game to which the strategy belongs.
Strategy.player The player to which the strategy belongs.
Strategy.number The number of the strategy.

50 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

Player behavior

Game.mixed_strategy_profile([data, rational]) Create a mixed strategy profile over the game.
Game.mixed_behavior_profile([rational]) Create a behavior strategy profile over the game.
Game.support_profile()

pygambit.gambit.Game.mixed_strategy_profile

Game.mixed_strategy_profile(data=None, rational=False)→ MixedStrategyProfile
Create a mixed strategy profile over the game.

If data is not specified, the mixed strategy profile is initialized to uniform randomization for each player over their
strategies. If the game has a tree representation, the mixed strategy profile is defined over the reduced strategic
form representation.

Parameters
• data – A nested list (or compatible type) with the same dimension as the strategy set of the

game, specifying the probabilities of the strategies.

• rational – If True, probabilities are represented using rational numbers; otherwise double-
precision floating point numbers are used.

pygambit.gambit.Game.mixed_behavior_profile

Game.mixed_behavior_profile(rational=False)→ MixedBehaviorProfile
Create a behavior strategy profile over the game.

The profile is initialized to uniform randomization for each player over their actions at each information set.

Parameters
rational – If True, probabilities are represented using rational numbers; otherwise double-
precision floating point numbers are used.

Raises
UndefinedOperationError – If the game does not have a tree representation.

pygambit.gambit.Game.support_profile

Game.support_profile()

3.2. API documentation 51

Gambit Documentation, Release 16.1.1

3.2.2 Representation of strategic behavior

Probability distributions over strategies

MixedStrategyProfile Represents a mixed strategy profile over the strategies in
a Game.

MixedStrategyProfile.game The game on which this mixed strategy profile is defined.
MixedStrategyProfile.__getitem__ Returns a probability or mixed strategy.
MixedStrategyProfile.__setitem__ Sets a probability or a mixed strategy to value.
MixedStrategyProfile.payoff (player) Returns the expected payoff to a player if all players play

according to the profile.
MixedStrategyProfile.regret(strategy) Returns the regret to playing strategy, if all other players

play according to the profile.
MixedStrategyProfile.strategy_value(strategy) Returns the expected payoff to playing the strategy, if all

other players play according to the profile.
MixedStrategyProfile.
strategy_value_deriv(...)

Returns the derivative of the payoff to playing strategy,
with respect to the probability that other is played.

MixedStrategyProfile.liap_value() Returns the Lyapunov value (see [McK91]) of the strat-
egy profile.

MixedStrategyProfile.as_behavior() Creates a mixed behavior profile which is equivalent to
this mixed strategy profile.

MixedStrategyProfile.randomize([denom]) Randomizes the probabilities in the profile.
MixedStrategyProfile.normalize() Create a profile with the same strategy proportions as

this one, but normalised so probabilities for each player
sum to one.

MixedStrategyProfile.copy() Creates a copy of the mixed strategy profile.

pygambit.gambit.MixedStrategyProfile

class pygambit.gambit.MixedStrategyProfile

Represents a mixed strategy profile over the strategies in a Game.

A mixed strategy profile is a dict-like object, mapping each strategy in a game to the corresponding probability
with which that strategy is played.

Mixed strategy profiles may represent probabilities as either exact (rational) numbers, or floating-point numbers.
These may not be combined in the same mixed strategy profile.

Changed in version 16.1.0: Profiles are accessed as dict-like objects; indexing by integer player or strategy indices
is no longer supported.

See also:

Game.mixed_strategy_profile
Creates a new mixed strategy profile on a game.

MixedBehaviorProfile
Represents a mixed behavior profile over a Game with an extensive representation.

52 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

Methods

as_behavior() Creates a mixed behavior profile which is equivalent
to this mixed strategy profile.

copy() Creates a copy of the mixed strategy profile.
liap_value() Returns the Lyapunov value (see [McK91]) of the

strategy profile.
normalize() Create a profile with the same strategy proportions

as this one, but normalised so probabilities for each
player sum to one.

payoff (player) Returns the expected payoff to a player if all players
play according to the profile.

randomize([denom]) Randomizes the probabilities in the profile.
regret(strategy) Returns the regret to playing strategy, if all other play-

ers play according to the profile.
strategy_value(strategy) Returns the expected payoff to playing the strategy, if

all other players play according to the profile.
strategy_value_deriv(strategy, other) Returns the derivative of the payoff to playing strat-

egy, with respect to the probability that other is
played.

Attributes

game The game on which this mixed strategy profile is de-
fined.

pygambit.gambit.MixedStrategyProfile.game

MixedStrategyProfile.game

The game on which this mixed strategy profile is defined.

pygambit.gambit.MixedStrategyProfile.__getitem__

MixedStrategyProfile.__getitem__()

Returns a probability or mixed strategy.

Parameters
index (Player, Strategy, or str) – The part of the profile to return:

• If index is a Player, returns a MixedStrategy over the player’s strategies.

• If index is a Strategy, returns the probability the strategy is played.

• If index is a str, attempts to resolve the referenced object by first searching for a player with
that label, and then for a strategy with that label.

Raises
MismatchError – If player is a Player from a different game, or strategy is a Strategy from
a different game.

3.2. API documentation 53

Gambit Documentation, Release 16.1.1

pygambit.gambit.MixedStrategyProfile.__setitem__

MixedStrategyProfile.__setitem__()

Sets a probability or a mixed strategy to value.

Parameters
index (Player, Strategy, or str) – The part of the profile to set:

• If index is a Player, sets the MixedStrategy over the player’s strategies.

• If index is a Strategy, sets the probability the strategy is played.

• If index is a str, attempts to resolve the referenced object by first searching for a player with
that label, and then for a strategy with that label.

Raises
MismatchError – If player is a Player from a different game, or strategy is a Strategy from
a different game.

pygambit.gambit.MixedStrategyProfile.payoff

MixedStrategyProfile.payoff(player: Player | str)
Returns the expected payoff to a player if all players play according to the profile.

Parameters
player (Player or str) – The player to get the payoff for. If a string is passed, the player is
determined by finding the player with that label, if any.

Raises
• MismatchError – If player is a Player from a different game.

• KeyError – If player is a string and no player in the game has that label.

pygambit.gambit.MixedStrategyProfile.regret

MixedStrategyProfile.regret(strategy: Strategy | str)
Returns the regret to playing strategy, if all other players play according to the profile.

The regret is defined as the difference between the payoff of the best-response strategy and the payoff of strategy.
By convention, the regret is always non-negative.

Parameters
strategy (Strategy or str) – The strategy to get the regret for. If a string is passed, the
strategy is determined by finding the strategy with that label, if any.

Raises
• MismatchError – If strategy is a Strategy from a different game.

• KeyError – If strategy is a string and no strategy in the game has that label.

54 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.MixedStrategyProfile.strategy_value

MixedStrategyProfile.strategy_value(strategy: Strategy | str)
Returns the expected payoff to playing the strategy, if all other players play according to the profile.

Parameters
strategy (Strategy or str) – The strategy to get the payoff for. If a string is passed, the
strategy is determined by finding the strategy with that label, if any.

Raises
• MismatchError – If strategy is a Strategy from a different game.

• KeyError – If strategy is a string and no strategy in the game has that label.

pygambit.gambit.MixedStrategyProfile.strategy_value_deriv

MixedStrategyProfile.strategy_value_deriv(strategy: Strategy | str, other: Strategy | str)
Returns the derivative of the payoff to playing strategy, with respect to the probability that other is played.

Raises
• MismatchError – If strategy or other is a Strategy from a different game.

• KeyError – If strategy or other is a string and no strategy in the game has that label.

pygambit.gambit.MixedStrategyProfile.liap_value

MixedStrategyProfile.liap_value()

Returns the Lyapunov value (see [McK91]) of the strategy profile.

The Lyapunov value is a non-negative number which is zero exactly at Nash equilibria.

pygambit.gambit.MixedStrategyProfile.as_behavior

MixedStrategyProfile.as_behavior()→ MixedBehaviorProfile
Creates a mixed behavior profile which is equivalent to this mixed strategy profile.

Returns
The equivalent mixed behavior profile.

Return type
MixedBehaviorProfile

Raises
UndefinedOperationError – If the game does not have a tree representation.

3.2. API documentation 55

Gambit Documentation, Release 16.1.1

pygambit.gambit.MixedStrategyProfile.randomize

MixedStrategyProfile.randomize(denom: int | None = None)→ None
Randomizes the probabilities in the profile. These are generated as uniform distributions over each mixed strat-
egy. If denom is specified, all probabilities are divisible by denom, that is, the distribution is uniform over a
discrete grid of mixed strategies.

pygambit.gambit.MixedStrategyProfile.normalize

MixedStrategyProfile.normalize()→ MixedStrategyProfile
Create a profile with the same strategy proportions as this one, but normalised so probabilities for each player
sum to one.

pygambit.gambit.MixedStrategyProfile.copy

MixedStrategyProfile.copy()→ MixedStrategyProfile
Creates a copy of the mixed strategy profile.

56 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

Probability distributions over behavior

MixedBehaviorProfile Represents a mixed behavior profile over the actions in
a Game.

MixedBehaviorProfile.game The game on which this mixed behavior profile is de-
fined.

MixedBehaviorProfile.__getitem__ Returns a probability, mixed agent strategy, or mixed be-
havior strategy.

MixedBehaviorProfile.__setitem__ Sets a probability, mixed agent strategy, or mixed behav-
ior strategy to value.

MixedBehaviorProfile.payoff (player) Returns the expected payoff to a player if all players play
according to the profile.

MixedBehaviorProfile.regret(action) Returns the regret to playing action, if all other players
play according to the profile.

MixedBehaviorProfile.action_value(action) Returns the expected payoff to the player of playing an
action conditional on reaching its information set, if all
players play according to the profile.

MixedBehaviorProfile.infoset_value(infoset) Returns the expected payoff to the player conditional on
reaching an information set, if all players play according
to the profile.

MixedBehaviorProfile.node_value(player, node) Returns the expected payoff to player conditional on play
reaching node, if all players play according to the profile.

MixedBehaviorProfile.realiz_prob(node) Returns the probability with which an node is reached.
MixedBehaviorProfile.infoset_prob(infoset) Returns the probability with which an information set is

reached.
MixedBehaviorProfile.belief (node) Returns the conditional probability that a node is

reached, given that its information set is reached.
MixedBehaviorProfile.is_defined_at(infoset) Returns whether the profile has probabilities defined at

the information set.
MixedBehaviorProfile.liap_value() Returns the Lyapunov value (see [McK91]) of the strat-

egy profile.
MixedBehaviorProfile.as_strategy() Returns a MixedStrategyProfile which is equivalent to

the profile.
MixedBehaviorProfile.randomize([denom]) Randomizes the probabilities in the profile.
MixedBehaviorProfile.normalize() Create a profile with the same action proportions as this

one, but normalised so probabilities for each infoset sum
to one.

MixedBehaviorProfile.copy() Creates a copy of the behavior strategy profile.

pygambit.gambit.MixedBehaviorProfile

class pygambit.gambit.MixedBehaviorProfile

Represents a mixed behavior profile over the actions in a Game.

A mixed behavior profile is a dict-like object, mapping each action at each information set in a game to the
corresponding probability with which the action is played, conditional on that information set being reached.

Mixed behavior profiles may represent probabilities as either exact (rational) numbers, or floating-point numbers.
These may not be combined in the same mixed behavior profile.

Changed in version 16.1.0: Profiles are accessed as dict-like objects; indexing by integer player, infoset, or action
indices is no longer supported.

3.2. API documentation 57

Gambit Documentation, Release 16.1.1

See also:

Game.mixed_behavior_profile
Creates a new mixed behavior profile on a game.

MixedStrategyProfile
Represents a mixed strategy profile over a Game.

Methods

action_value(action) Returns the expected payoff to the player of playing
an action conditional on reaching its information set,
if all players play according to the profile.

as_strategy() Returns a MixedStrategyProfile which is equivalent
to the profile.

belief (node) Returns the conditional probability that a node is
reached, given that its information set is reached.

copy() Creates a copy of the behavior strategy profile.
infoset_prob(infoset) Returns the probability with which an information set

is reached.
infoset_value(infoset) Returns the expected payoff to the player conditional

on reaching an information set, if all players play ac-
cording to the profile.

is_defined_at(infoset) Returns whether the profile has probabilities defined
at the information set.

liap_value() Returns the Lyapunov value (see [McK91]) of the
strategy profile.

node_value(player, node) Returns the expected payoff to player conditional on
play reaching node, if all players play according to the
profile.

normalize() Create a profile with the same action proportions as
this one, but normalised so probabilities for each in-
foset sum to one.

payoff (player) Returns the expected payoff to a player if all players
play according to the profile.

randomize([denom]) Randomizes the probabilities in the profile.
realiz_prob(node) Returns the probability with which an node is

reached.
regret(action) Returns the regret to playing action, if all other play-

ers play according to the profile.

Attributes

game The game on which this mixed behavior profile is de-
fined.

58 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.MixedBehaviorProfile.game

MixedBehaviorProfile.game

The game on which this mixed behavior profile is defined.

pygambit.gambit.MixedBehaviorProfile.__getitem__

MixedBehaviorProfile.__getitem__()

Returns a probability, mixed agent strategy, or mixed behavior strategy.

Parameters
index (Player, Infoset, Action, or str) – The part of the profile to return:

• If index is a Player, returns a MixedBehaviorStrategy over the player’s infosets

• If index is an Infoset, returns a MixedAgentStrategy over the infoset’s actions

• If index is an Action, returns the probability the action is playe

• If index is a str, attempts to resolve the referenced object by first searching for a player with
that label, then for an infoset with that label, and finally for an action with that label.

Raises
MismatchError – If player is a Player from a different game, infoset is an Infoset from a
different game, or action is an Action from a different game.`

pygambit.gambit.MixedBehaviorProfile.__setitem__

MixedBehaviorProfile.__setitem__()

Sets a probability, mixed agent strategy, or mixed behavior strategy to value.

Parameters
index (Player, Infoset, Action, or str) – The part of the profile to return:

• If index is a Player, returns a MixedBehaviorStrategy over the player’s infosets

• If index is an Infoset, returns a MixedAgentStrategy over the infoset’s actions

• If index is an Action, returns the probability the action is playe

• If index is a str, attempts to resolve the referenced object by first searching for a player with
that label, then for an infoset with that label, and finally for an action with that label.

Raises
MismatchError – If player is a Player from a different game, infoset is an Infoset from a different
game, or action is an Action from a different game.`

3.2. API documentation 59

Gambit Documentation, Release 16.1.1

pygambit.gambit.MixedBehaviorProfile.payoff

MixedBehaviorProfile.payoff(player: Player | str)
Returns the expected payoff to a player if all players play according to the profile.

Parameters
player (Player or str) – The player to get the payoff for. If a string is passed, the player is
determined by finding the player with that label, if any.

Raises
• MismatchError – If player is a Player from a different game.

• KeyError – If player is a string and no player in the game has that label.

• ValueError – If player resolves to the chance player

pygambit.gambit.MixedBehaviorProfile.regret

MixedBehaviorProfile.regret(action: Action | str)
Returns the regret to playing action, if all other players play according to the profile.

The regret is defined as the difference between the payoff of the best-response action and the payoff of action.
Payoffs are computed conditional on reaching the information set. By convention, the regret is always non-
negative.

Parameters
action (Action or str) – The action to get the regret for. If a string is passed, the action is
determined by finding the action with that label, if any.

Raises
• MismatchError – If action is an Action from a different game.

• KeyError – If action is a string and no action in the game has that label.

pygambit.gambit.MixedBehaviorProfile.action_value

MixedBehaviorProfile.action_value(action: Action | str)
Returns the expected payoff to the player of playing an action conditional on reaching its information set, if all
players play according to the profile.

Parameters
action (Action or str) – The action to get the payoff for. If a string is passed, the action is
determined by finding the action with that label, if any.

Raises
• MismatchError – If action is an Action from a different game.

• KeyError – If action is a string and no action in the game has that label.

• ValueError – If action resolves to an action that belongs to the chance player

60 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.MixedBehaviorProfile.infoset_value

MixedBehaviorProfile.infoset_value(infoset: Infoset | str)
Returns the expected payoff to the player conditional on reaching an information set, if all players play according
to the profile.

Parameters
infoset (Infoset or str) – The information set to get the payoff for. If a string is passed,
the information set is determined by finding the information set with that label, if any.

Raises
• MismatchError – If infoset is an Infoset from a different game.

• KeyError – If infoset is a string and no information set in the game has that label.

• ValueError – If infoset resolves to an infoset that belongs to the chance player

pygambit.gambit.MixedBehaviorProfile.node_value

MixedBehaviorProfile.node_value(player: Player | str, node: Node | str)
Returns the expected payoff to player conditional on play reaching node, if all players play according to the
profile.

Parameters
• player (Player or str) – The player to get the payoff for. If a string is passed, the player

is determined by finding the player with that label, if any.

• node (Node or str) – The node to get the payoff att. If a string is passed, the node is
determined by finding the node with that label, if any.

Raises
• MismatchError – If player is a Player from a different game or node is a Node from a

different game.

• KeyError – If player is a string and no player in the game has that label, or node is a string
and no node in the game has that label.

• ValueError – If player resolves to the chance player

pygambit.gambit.MixedBehaviorProfile.realiz_prob

MixedBehaviorProfile.realiz_prob(node: Node | str)
Returns the probability with which an node is reached.

Parameters
node (Node or str) – The node to get the payoff for. If a string is passed, the node is determined
by finding the node with that label, if any.

Raises
• MismatchError – If node is an Node from a different game.

• KeyError – If node is a string and no node in the game has that label.

3.2. API documentation 61

Gambit Documentation, Release 16.1.1

pygambit.gambit.MixedBehaviorProfile.infoset_prob

MixedBehaviorProfile.infoset_prob(infoset: Infoset | str)
Returns the probability with which an information set is reached.

Parameters
infoset (Infoset or str) – The information set to get the payoff for. If a string is passed,
the information set is determined by finding the information set with that label, if any.

Raises
• MismatchError – If infoset is an Infoset from a different game.

• KeyError – If infoset is a string and no information set in the game has that label.

pygambit.gambit.MixedBehaviorProfile.belief

MixedBehaviorProfile.belief(node: Node | str)
Returns the conditional probability that a node is reached, given that its information set is reached.

Parameters
node – The node of the game tree

Raises
MismatchError – If node is not in the same game as the profile

pygambit.gambit.MixedBehaviorProfile.is_defined_at

MixedBehaviorProfile.is_defined_at(infoset: Infoset | str)→ bool
Returns whether the profile has probabilities defined at the information set. A profile can be well-defined if
probabilities are not specified at some information sets, as long as those information sets are reached with zero
probability.

Parameters
infoset (Infoset or str) – The information set to check. If a string is passed, the informa-
tion set is determined by finding the information set with that label, if any.

Raises
• MismatchError – If infoset is an Infoset from a different game.

• KeyError – If infoset is a string and no information set in the game has that label.

pygambit.gambit.MixedBehaviorProfile.liap_value

MixedBehaviorProfile.liap_value()

Returns the Lyapunov value (see [McK91]) of the strategy profile.

The Lyapunov value is a non-negative number which is zero exactly at Nash equilibria.

62 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.gambit.MixedBehaviorProfile.as_strategy

MixedBehaviorProfile.as_strategy()→ MixedStrategyProfile
Returns a MixedStrategyProfile which is equivalent to the profile.

pygambit.gambit.MixedBehaviorProfile.randomize

MixedBehaviorProfile.randomize(denom: int | None = None)→ None
Randomizes the probabilities in the profile. These are generated as uniform distributions over the actions at each
information set. If denom is specified, all probabilities are divisible by denom, that is, the distribution is uniform
over a discrete grid of mixed strategies.

pygambit.gambit.MixedBehaviorProfile.normalize

MixedBehaviorProfile.normalize()→ MixedBehaviorProfile
Create a profile with the same action proportions as this one, but normalised so probabilities for each infoset sum
to one.

pygambit.gambit.MixedBehaviorProfile.copy

MixedBehaviorProfile.copy()→ MixedBehaviorProfile
Creates a copy of the behavior strategy profile.

3.2.3 Computation on supports

undominated_strategies_solve(profile[, ...]) Return a support profile including only the strategies in
profile which are not dominated by another pure strategy.

pygambit.supports.undominated_strategies_solve

pygambit.supports.undominated_strategies_solve(profile: StrategySupportProfile, strict: bool = False,
external: bool = False)→ StrategySupportProfile

Return a support profile including only the strategies in profile which are not dominated by another pure strategy.

This function performs only one round of elimination.

Parameters
• profile (StrategySupportProfile) – The initial profile of strategies

• strict (bool, default False) – If specified True, eliminate only strategies which are
strictly dominated. If False, strategies which are weakly dominated are also eliminated.

• external (bool, default False) – The default is to consider dominance only by strate-
gies which are in the support profile for that player. If True, strategies which are dominated
by another strategy not in the support profile are also eliminated.

Returns
A new support profile containing only the strategies which are not dominated.

3.2. API documentation 63

Gambit Documentation, Release 16.1.1

Return type
StrategySupportProfile

3.2.4 Computation of Nash equilibria

enumpure_solve(game[, use_strategic, external]) Compute all pure-strategy Nash equilibria of game.
enummixed_solve(game[, rational, external, ...]) Compute all mixed-strategy Nash equilibria of a two-

player game using the strategic representation.
lp_solve(game[, rational, use_strategic, ...]) Compute Nash equilibria of a two-player constant-sum

game using linear programming.
lcp_solve(game[, rational, use_strategic, ...]) Compute Nash equilibria of a two-player game using lin-

ear complementarity programming.
liap_solve(game[, use_strategic, maxiter, ...]) Compute Nash equilibria of a game using Lyapunov

function minimization.
logit_solve(game[, use_strategic]) Compute Nash equilibria of a game using the logit quan-

tal response equilibrium correspondence.
simpdiv_solve(game[, refine, leash, external]) Compute Nash equilibria of a game using simplicial sub-

division.
ipa_solve(game[, external]) Compute Nash equilibria of a game using iterated poly-

matrix approximation.
gnm_solve(game[, external]) Compute Nash equilibria of a game using a global New-

ton method.

pygambit.nash.enumpure_solve

pygambit.nash.enumpure_solve(game: Game, use_strategic: bool = True, external: bool = False)→
List[MixedStrategyProfile] | List[MixedBehaviorProfile]

Compute all pure-strategy Nash equilibria of game.

Parameters
• game (Game) – The game to compute equilibria in.

• use_strategic (bool, default True) – Whether to use the strategic form. If False,
computes all agent-form pure-strategy equilibria, which treat only unilateral deviations at
each individual information set.

• external (bool, default False) – Call the external command-line solver instead of the
internally-linked implementation. Requires the command-line solvers to be installed some-
where accessible in the system path.

Returns
List of mixed strategy or mixed behavior profiles computed.

Return type
List of profiles

64 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.nash.enummixed_solve

pygambit.nash.enummixed_solve(game: Game, rational: bool = True, external: bool = False, use_lrs: bool =
False)→ List[MixedStrategyProfile]

Compute all mixed-strategy Nash equilibria of a two-player game using the strategic representation.

Parameters
• game (Game) – The game to compute equilibria in.

• rational (bool, default True) – Compute using rational numbers. If False, using
floating-point arithmetic. Using rationals is more precise, but slower.

• external (bool, default False) – Call the external command-line solver instead of the
internally-linked implementation. Requires the command-line solvers to be installed some-
where accessible in the system path.

• use_lrs (bool, default False) – If True, use the implementation based on lrslib.
This is experimental.

Returns
The list of mixed strategy profiles computed.

Return type
List of mixed strategy profiles

Raises
RuntimeError – If game has more than two players.

pygambit.nash.lp_solve

pygambit.nash.lp_solve(game: Game, rational: bool = True, use_strategic: bool = False, external: bool =
False)→ List[MixedStrategyProfile] | List[MixedBehaviorProfile]

Compute Nash equilibria of a two-player constant-sum game using linear programming.

Parameters
• game (Game) – The game to compute equilibria in.

• rational (bool, default True) – Compute using rational numbers. If False, using
floating-point arithmetic. Using rationals is more precise, but slower.

• use_strategic (bool, default False) – Whether to use the strategic form. If True,
always uses the strategic representation even if the game’s native representation is extensive.

• external (bool, default False) – Call the external command-line solver instead of the
internally-linked implementation. Requires the command-line solvers to be installed some-
where accessible in the system path.

Returns
List of mixed strategy or mixed behavior profiles computed.

Return type
List of profiles

Raises
RuntimeError – If game has more than two players or is not constant sum.

3.2. API documentation 65

Gambit Documentation, Release 16.1.1

pygambit.nash.lcp_solve

pygambit.nash.lcp_solve(game: Game, rational: bool = True, use_strategic: bool = False, external: bool =
False, stop_after: int | None = None, max_depth: int | None = None)→
List[MixedStrategyProfile] | List[MixedBehaviorProfile]

Compute Nash equilibria of a two-player game using linear complementarity programming.

Parameters
• game (Game) – The game to compute equilibria in.

• rational (bool, default True) – Compute using rational numbers. If False, using
floating-point arithmetic. Using rationals is more precise, but slower.

• use_strategic (bool, default False) – Whether to use the strategic form. If True,
always uses the strategic representation even if the game’s native representation is extensive.

• external (bool, default False) – Call the external command-line solver instead of the
internally-linked implementation. Requires the command-line solvers to be installed some-
where accessible in the system path.

• stop_after (int, optional) – Maximum number of equilibria to compute. If not spec-
ified, computes all accessible equilibria.

• max_depth (int, optional) – Maximum depth of recursion. If specified, will limit the
recursive search, but may result in some accessible equilibria not being found.

Returns
List of mixed strategy or mixed behavior profiles computed.

Return type
List of profiles

Raises
RuntimeError – If game has more than two players.

pygambit.nash.liap_solve

pygambit.nash.liap_solve(game: Game, use_strategic: bool = True, maxiter: int = 100, external: bool =
False)→ List[MixedStrategyProfile] | List[MixedBehaviorProfile]

Compute Nash equilibria of a game using Lyapunov function minimization.

Parameters
• game (Game) – The game to compute equilibria in.

• use_strategic (bool, default False) – Whether to use the strategic form. If True,
always uses the strategic representation even if the game’s native representation is extensive.

• maxiter (int, default 100) – Maximum number of iterations in function minimization.

• external (bool, default False) – Call the external command-line solver instead of the
internally-linked implementation. Requires the command-line solvers to be installed some-
where accessible in the system path.

Returns
List of mixed strategy or mixed behavior profiles computed.

Return type
List of profiles

66 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.nash.logit_solve

pygambit.nash.logit_solve(game: Game, use_strategic: bool = False)→ List[MixedStrategyProfile] |
List[MixedBehaviorProfile]

Compute Nash equilibria of a game using the logit quantal response equilibrium correspondence.

Returns an approximation to the limiting point on the principal branch of the correspondence for the game.

Parameters
• game (Game) – The game to compute equilibria in.

• use_strategic (bool, default False) – Whether to use the strategic form. If True,
always uses the strategic representation even if the game’s native representation is extensive.

Returns
List of mixed strategy or mixed behavior profiles computed.

Return type
List of profiles

pygambit.nash.simpdiv_solve

pygambit.nash.simpdiv_solve(game: Game, refine: int = 2, leash: int | None = None, external: bool = False)
→ List[MixedStrategyProfile]

Compute Nash equilibria of a game using simplicial subdivision.

Parameters
• game (Game) – The game to compute equilibria in.

• refine (int, default 2) – This controls the rate at which the triangulation of the space
of mixed strategy profiles is made more fine at each iteration.

• leash (int, optional) – Simplicial subdivision is guaranteed to converge to an (approx-
imate) Nash equilibrium. The method may take arbitrarily long paths through the space of
mixed strategies in doing so. If specified, leash sets a maximum number of grid steps the
method may explore. This trades off the possibility of finding an equilibrium more quickly
by giving up the guarantee than an equilibrium will necessarily be found.

• external (bool, default False) – Call the external command-line solver instead of the
internally-linked implementation. Requires the command-line solvers to be installed some-
where accessible in the system path.

Returns
The list of mixed strategy profiles computed.

Return type
List of mixed strategy profiles

3.2. API documentation 67

Gambit Documentation, Release 16.1.1

pygambit.nash.ipa_solve

pygambit.nash.ipa_solve(game: Game, external: bool = False)→ List[MixedStrategyProfile]
Compute Nash equilibria of a game using iterated polymatrix approximation.

Parameters
• game (Game) – The game to compute equilibria in.

• external (bool, default False) – Call the external command-line solver instead of the
internally-linked implementation. Requires the command-line solvers to be installed some-
where accessible in the system path.

Returns
The list of mixed strategy profiles computed.

Return type
List of mixed strategy profiles

pygambit.nash.gnm_solve

pygambit.nash.gnm_solve(game: Game, external: bool = False)→ List[MixedStrategyProfile]
Compute Nash equilibria of a game using a global Newton method.

Parameters
• game (Game) – The game to compute equilibria in.

• external (bool, default False) – Call the external command-line solver instead of the
internally-linked implementation. Requires the command-line solvers to be installed some-
where accessible in the system path.

Returns
The list of mixed strategy profiles computed.

Return type
List of mixed strategy profiles

3.2.5 Computation of quantal response equilibria

fit_empirical(data) Use maximum likelihood estimation to estimate a quan-
tal response equilibrium using the empirical payoff
method.

fit_fixedpoint(data) Use maximum likelihood estimation to find the logit
quantal response equilibrium on the principal branch for
a strategic game which best fits empirical frequencies of
play.

LogitQREMixedStrategyFitResult(data, method,
...)

The result of fitting a QRE to a given probability distri-
bution over strategies.

68 Chapter 3. pygambit Python package

Gambit Documentation, Release 16.1.1

pygambit.qre.fit_empirical

pygambit.qre.fit_empirical(data: MixedStrategyProfileDouble)→ LogitQREMixedStrategyFitResult
Use maximum likelihood estimation to estimate a quantal response equilibrium using the empirical payoff
method. The empirical payoff method operates by ignoring the fixed-point considerations of the QRE and ap-
proximates instead by a collection of independent decision problems.1

New in version 16.1.0.

Returns
The result of the estimation represented as a LogitQREMixedStrategyFitResult object.

Return type
LogitQREMixedStrategyFitResult

See also:

fit_fixedpoint
Estimate QRE precisely by computing the correspondence

References

pygambit.qre.fit_fixedpoint

pygambit.qre.fit_fixedpoint(data: MixedStrategyProfileDouble)→ LogitQREMixedStrategyFitResult
Use maximum likelihood estimation to find the logit quantal response equilibrium on the principal branch for a
strategic game which best fits empirical frequencies of play.1

New in version 16.1.0.

Parameters
data (MixedStrategyProfileDouble) – The empirical distribution of play to which to fit the
QRE. To obtain the correct resulting log-likelihood, these should be expressed as total counts of
observations of each strategy rather than probabilities.

Returns
The result of the estimation represented as a LogitQREMixedStrategyFitResult object.

Return type
LogitQREMixedStrategyFitResult

See also:

fit_empirical
Estimate QRE by approximation of the correspondence using independent decision problems.

1 Bland, J. R. and Turocy, T. L., 2023. Quantal response equilibrium as a structural model for estimation: The missing manual. SSRN working
paper 4425515.

1 Bland, J. R. and Turocy, T. L., 2023. Quantal response equilibrium as a structural model for estimation: The missing manual. SSRN working
paper 4425515.

3.2. API documentation 69

Gambit Documentation, Release 16.1.1

References

pygambit.qre.LogitQREMixedStrategyFitResult

class pygambit.qre.LogitQREMixedStrategyFitResult(data, method, lam, profile, log_like)
The result of fitting a QRE to a given probability distribution over strategies.

See also:
fit_fixedpoint, fit_empirical

Methods

Attributes

data The empirical strategy frequencies used to estimate
the QRE.

lam The value of lambda corresponding to the QRE.
log_like The log-likelihood of the data at the estimated QRE.
method The method used to estimate the QRE; either "fixed-

point" or "empirical".
profile The mixed strategy profile corresponding to the QRE.

70 Chapter 3. pygambit Python package

CHAPTER

FOUR

THE GRAPHICAL INTERFACE

Gambit’s graphical user interface provides an “integrated development environment” to help visually construct games
and to investigate their main strategic features.

The graphical interface is largely intended for the interactive construction and analysis of small to medium games.
Repeating the caution from the introduction of this manual, the computation time required for the equilibrium analysis
of games increases rapidly in the size of the game. The graphical interface is ideal for students learning about the
fundamentals of game theory, or for practitioners prototyping games of interest.

In graduating to larger applications, users are encouraged to make use of the underlying Gambit libraries and programs
directly. For greater control over computing Nash and quantal response equilibria of a game, see the section on the
command-line tools. To build larger games or to explore parameter spaces of a game systematically, it is recommended
to use the Python package.

4.1 General concepts

4.1.1 General layout of the main window

The frame presenting a game consists of two principal panels. The main panel, to the right, displays the game graphi-
cally; in this case, showing the game tree of a simple one-card poker game. To the left is the player panel, which lists
the players in the game; here, Fred and Alice are the players. Note that where applicable, information is color-coded
to match the colors assigned to the players: Fred’s moves and payoffs are all presented in red, and Alice’s in blue. The
color assigned to a player can be changed by clicking on the color icon located to the left of the player’s name on the
player panel. Player names are edited by clicking on the player’s name, and editing the name in the text control that
appears.

Two additional panels are available. Selecting Tools → Dominance toggles the display of an additional toolbar across
the top of the window. This toolbar controls the indication and elimination of actions or strategies that are dominated.
The use of this toolbar is discussed in Investigating dominated strategies and actions.

71

_images/overview.png

Gambit Documentation, Release 16.1.1

Selecting View → Profiles, or clicking the show profiles icon on the toolbar, toggles the display of the list of computed
strategy profiles on the game. More on the way the interface handles the computation of Nash equilibria and other
kinds of strategy profiles is presented in Computing Nash equilibria.

4.1.2 Payoffs and probabilities in Gambit

Gambit stores all payoffs in games in an arbitrary-precision format. Payoffs may be entered as decimal numbers with
arbitrarily many decimal places. In addition, Gambit supports representing payoffs using rational numbers. So, for
example, in any place in which a payoff may appear, either an outcome of an extensive game or a payoff entry in a
strategic game, the payoff one-tenth may be entered either as .1 or 1/10.

The advantage of this format is that, in certain circumstances, Gambit may be able to compute equilibria exactly. In
addition, some methods for computing equilibria construct good numerical approximations to equilibrium points. For
these methods, the computed equilibria are stored in floating-point format. To increase the number of decimal places
shown for these profiles, click the increase decimals icon . To decrease the number of decimal places shown, click the
decrease decimals icon .

Increasing or decreasing the number of decimals displayed in computed strategy profiles will not have any effect on the
display of outcome payoffs in the game itself, since those are stored in arbitrary precision.

4.1.3 A word about file formats

The graphical interface manipulates several different file formats for representing games. This section gives a quick
overview of those formats.

Gambit has for many years supported two file formats for representing games, one for extensive games (typically using
the filename extension .efg) and one for strategic games (typically using the filename extension .nfg). These file formats
are recognized by all Gambit versions dating back to release 0.94 in 1995. (Users interested in the details of these file
formats can consult Game representation formats for more information.)

Beginning with release 2005.12.xx, the graphical interface now reads and writes a new file format, which is referred to
as a”Gambit workbook.” This extended file format stores not only the representation of the game, but also additional
information, including parameters for laying out the game tree, the colors assigned to players, any equilibria or other
analysis done on the game, and so forth. So, for example, the workbook file can be used to store the analysis of a game
and then return to it. These files by convention end in the extension .gbt.

The graphical interface will read files in all three formats: .gbt, .efg, and .nfg. The “Save” and “Save as” commands,
however, always save in the Gambit workbook (.gbt) format. To save the game itself as an extensive (.efg) or strategic
(.nfg) game, use the items on the “Export” submenu of the “File” menu. This is useful in interfacing with older versions
of Gambit, with other tools which read and write those formats, and in using the underlying Gambit analysis command-
line tools directly, as those programs accept .efg or .nfg game files. Users primarily interested in using Gambit solely
via the graphical interface are encouraged to use the workbook (.gbt) format.

As it is a new format, the Gambit workbook format is still under development and may change in details. It is intended
that newer versions of the graphical interface will still be able to read workbook files written in older formats.

72 Chapter 4. The graphical interface

Gambit Documentation, Release 16.1.1

4.2 Extensive games

The graphical interface provides a flexible set of operations for constructing and editing general extensive games. These
are outlined below.

4.2.1 Creating a new extensive game

To create a new extensive game, select File → New → Extensive game, or click on the new extensive game icon .
The extensive game created is a trivial game with two players, named by default Player 1 and Player 2, with one node,
which is both the root and terminal node of the game. In addition, extensive games have a special player labeled Chance,
which is used to represent random events not controlled by any of the strategic players in the game.

4.2.2 Adding moves

There are two options for adding moves to a tree: drag-and-drop and the Insert move dialog.

1. Moves can be added to the tree using a drag-and-drop idiom. From the player list window, drag the player icon
located to the left of the player who will have the move to any terminal node in the game tree. The tree will be
extended with a new move for that player, with two actions at the new move. Adding a move for the chance player
is done the same way, except the dice icon appearing to the left of the chance player in the player list window is
used instead of the player icon. For the chance player, the two actions created will each be given a probability
weight of one-half. If the desired move has more than two actions, additional actions can be added by dragging
the same player’s icon to the move node; this will add one action to the move each time this is done.

2. Click on any terminal node in the tree, and select Edit → Insert move to display the insert move dialog. The
dialog is intended to read like a sentence:

• The first control specifies the player who will make the move. The move can be assigned to a new player
by specifying Insert move for a new player here.

• The second control selects the information set to which to add the move. To create the move in a new
information set, select at a new information set for this control.

• The third control sets the number of actions. This control is disabled unless the second control is set to at a
new information set. Otherwise, it is set automatically to the number of actions at the selected information
set.

The two methods can be useful in different contexts. The drag-and-drop approach is a bit quicker to use, especially
when creating trees that have few actions at each move. The dialog approach is a bit more flexible, in that a move can
be added for a new, as-yet-undefined player, a move can be added directly into an existing information set, and a move
can be immediately given more than two actions.

4.2. Extensive games 73

_images/insertmove.png

Gambit Documentation, Release 16.1.1

4.2.3 Copying and moving subtrees

Many extensive games have structures that appear in multiple parts of the tree. It is often efficient to create the structure
once, and then copy it as needed elsewhere.

Gambit provides a convenient idiom for this. Clicking on any nonterminal node and dragging to any terminal node
implements a move operation, which moves the entire subtree rooted at the original, nonterminal node to the terminal
node.

To turn the operation into a copy operation:

• On Windows and Linux systems, hold down the Ctrl key during the operation.

• On OS X, hold down the Cmd key when starting the drag operation, then release prior to dropping.

The entire subtree rooted at the original node is copied, starting at the terminal node. In this copy operation, each node
in the copied image is placed in the same information set as the corresponding node in the original subtree.

Copying a subtree to a terminal node in that subtree is also supported. In this case, the copying operation is halted when
reaching the terminal node, to avoid an infinite loop. Thus, this feature can also be helpful in constructing multiple-stage
games.

4.2.4 Removing parts of a game tree

Two deletion operations are supported on extensive games. To delete the entire subtree rooted at a node, click on that
node and select Edit → Delete subtree.

To delete an individual move from the game, click on one of the direct children of that node, and select Edit → Delete
parent. This operation deletes the parent node, as well as all the children of the parent other than the selected node.
The selected child node now takes the place of the parent node in the tree.

4.2.5 Managing information sets

Gambit provides several methods to help manage the information structure in an extensive game.

When building a tree, new moves can be placed in a given information set using the Insert move dialog. Additionally,
new moves can be created using the drag-and-drop idiom by holding down the Shift key and dragging a node in the
tree. During the drag operation, the cursor changes to the move icon . Dropping the move icon on another node places
the target node in the same information set as the node where the drag operation began.

The information set to which a node belongs can also be set by selecting Edit→Node. This displays the node properties
dialog. The Information set dropdown defaults to the current information set to which the node belongs, and contains
a list of all other information sets in the game which are compatible with the node, that is, which have the same number
of actions. Additionally, the node can be moved to a new, singleton information set by setting this dropdown to the New
information set entry.

74 Chapter 4. The graphical interface

_images/editnode.png

Gambit Documentation, Release 16.1.1

When building out a game tree using the drag-and-drop approach to copying portions of the tree, the nodes created in
the copy of the subtree remain in the same information set as the corresponding nodes in the original subtree. In many
cases, though, these trees differ in the information available to some or all of the players. To help speed the process
of adjusting information sets in bulk, Gambit offers a “reveal” operation, which breaks information sets based on the
action taken at a particular node. Click on a node at which the action taken is to be made known subsequently to other
players, and select Edit → Reveal. This displays a dialog listing the players in the game. Check the boxes next to
the players who observe the outcome of the move at the node, and click OK. The information sets at nodes below the
selected one are adjusted based on the action selected at this node.

Note: The reveal operation only has an effect at the time it is done. In particular, it does not enforce the separation of
information sets based on this information during subsequent editing of the game.

4.2.6 Outcomes and payoffs

Gambit supports the specification of payoffs at any node in a game tree, whether terminal or not. Each node is created
with no outcome attached; in this case, the payoff at each node is zero to all players. These are indicated in the game
tree by the presence of a (u) in light grey to the right of a node.

To set the payoffs at a node, double-click on the (u) to the right of the node. This creates a new outcome at the node,
with payoffs of zero for all players, and displays an editor to set the payoff of the first player.

The payoff to a player for an outcome can be edited by double-clicking on the payoff entry. This action creates a text
edit control in which the payoff to that player can be modified. Edits to the payoff can be accepted by pressing the
Enter key. In addition, accepting the payoff by pressing the Tab key both stores the changes to the player’s payoff, and
advances the editor to the payoff for the next player at that outcome.

Outcomes may also be moved or copied using a drag-and-drop idiom. Left-clicking and dragging an outcome to another
node moves the outcome from the original node to the target node. Copying an outcome may be accomplished by doing
this same action while holding down the Control (Ctrl) key on the keyboard.

When using the copy idiom described above, the action assigns the same outcome to both the involved nodes. Therefore,
if subsequently the payoffs of the outcome are edited, the payoffs at both nodes will be modified. To copy the outcome
in such a way that the outcome at the target node is a different outcome from the one at the source, but with the same
payoffs, hold down the Shift key instead of the Control key while dragging.

To remove an outcome from a node, click on the node, and select Edit → Remove outcome.

4.2.7 Formatting and labeling the tree

Gambit offers some options for customizing the display of game trees.

Labels on nodes and branches

The information displayed at the nodes and on the branches of the tree can be configured by selecting Format → Labels,
which displays the tree labels dialog.

4.2. Extensive games 75

Gambit Documentation, Release 16.1.1

Above and below each node, the following information can be displayed:

No label
The space is left blank.

The node’s label
The text label assigned to the node. (This is the default labeling above each node.)

The player’s name
The name of the player making the move at the node.

The information set’s label
The name of the information set to which the node belongs.

The information set’s number
A unique identifier of the information set, in the form player number:information set number. (This is the default
labeling below each node.)

The realization probability
The probability the node is reached. (Only displayed when a behavior strategy is selected to be displayed on the
tree.)

The belief probability
The probability a player assigns to being at the node, conditional on reaching the information set. (Only displayed
when a behavior strategy is selected to be displayed on the tree.)

The payoff of reaching the node
The expected payoff to the player making the choice at the node, conditional on reaching the node. (Only dis-
played when a behavior strategy is selected to be displayed on the tree.)

Above and below each branch, the following information can be displayed:

No label
The space is left blank.

The name of the action
The name of the action taken on the branch. (This it the default labeling above the branch.)

The probability the action is played
For chance actions, the probability the branch is taken; this is always displayed. For player actions, the probability
the action is taken in the selected profile (only displayed when a behavior strategy is selected to be displayed on
the tree). In some cases, behavior strategies do not fully specify behavior sufficiently far off the equilibrium path;
in such cases, an asterisk is shown for such action probabilities. (This is the default labeling below each branch.)

The value of the action
The expected payoff to the player of taking the action, conditional on reaching the information set. (Only dis-
played when a behavior strategy is selected to be displayed on the tree.)

76 Chapter 4. The graphical interface

_images/labels.png

Gambit Documentation, Release 16.1.1

Controlling the layout of the tree

Gambit implements an automatic system for layout out game trees, which provides generally good results for most
games. These can be adjusted by selecting Format → Layout. The layout parameters are organized on three tabs.

The first tab, labeled Nodes, controls the size, location, and rendering of nodes in the tree. Nodes can be indicated
using one of five tokens: a horizontal line (the “traditional” Gambit style from previous versions), a box, a diamond,
an unfilled circle, and a filled circle). These can be set independently to distinguish chance and terminal nodes from
player nodes.

The sizing of nodes can be configured for best results. Gambit styling from previous versions used the horizontal line
tokens with relatively long lines; when using the other tokens, smaller node sizes often look better.

The layout algorithm is based upon identifying the location of terminal nodes. The vertical spacing between these
nodes can be set; making this value larger will tend to give the tree a larger vertical extent.

The second tab, labeled Branches, controls the display of the branches of the tree. The traditional Gambit way of
drawing branches is a “fork-tine” approach, in which there is a flat part at the end of each branch at which labels are
displayed. Alternatively, branches can be drawn directly between nodes by setting Draw branches to using straight
lines between nodes. With this setting, labels are now displayed at points along the (usually) diagonal branches. Labels
are usually shown horizontally; however, they can be drawn rotated parallel to the branches by setting Draw labels to
rotated.

The rotated label drawing is experimental, and does not always look good on screen.

The length used for branches and their tines, if drawn, can be configured. Longer branch and tine lengths give more
space for longer labels to be drawn, at the cost of giving the tree a larger horizontal extent.

4.2. Extensive games 77

_images/layoutnodes.png
_images/layoutbranches.png
_images/layoutinfosets.png

Gambit Documentation, Release 16.1.1

Finally, display of the information sets in the game is configured under the tab labeled Information sets. Members of
information sets are by default connected using a “bubble” similar to that drawn in textbook diagrams of games. The
can be modified to use a single line to connect nodes in the same information set. In conjunction with using lines for
nodes, this can sometimes lead to a more compact representation of a tree where there are many information sets at the
same horizontal location.

The layout of the tree may be such that members of the same information set appear at different horizontal locations
in the tree. In such a case, by default, Gambit draws a horizontal arrow pointing rightward or leftward to indicate the
continuation of the information set, as illustrated in the diagram nearby.

These connections can be disabled by setting Connect members of information sets to only when on the same level. In
addition, drawing information set indicators can be disabled entirely by setting this to invisibly (don’t draw indicators).

Selecting fonts and colors

To select the font used to draw the labels in the tree, select Format → Font. The standard font selection dialog for the
operating system is displayed, showing the fonts available on the system. Since available fonts vary across systems,
when opening a workbook on a system different from the system on which it was saved, Gambit tries to match the font
style as closely as possible when the original font is not available.

The color-coding for each player can be changed by clicking on the color icon to the left of the corresponding player.

4.3 Strategic games

Gambit has full support for constructing and manipulating arbitrary N-player strategic (also known as normal form)
games.

For extensive games, Gambit automatically computes the corresponding reduced strategic game. To view the reduced
strategic game corresponding to an extensive game, select View → Strategic game or click the strategic game table icon
on the toolbar.

The strategic games computed by Gambit as the reduced strategic game of an extensive game cannot be modified
directly. Instead, edit the original extensive game; Gambit automatically recomputes the strategic game after any
changes to the extensive game.

Strategic games may also be input directly. To create a new strategic game, select File → New → Strategic game, or
click the new strategic game icon on the toolbar.

78 Chapter 4. The graphical interface

_images/connectinfoset.png

Gambit Documentation, Release 16.1.1

4.3.1 Navigating a strategic game

Gambit displays a strategic game in table form. All players are assigned to be either row players or column players,
and the payoffs for each entry in the strategic game table correspond to the payoffs corresponding to the situation in
which all the row players play the strategy specified on that row for them, and all the column players play the strategy
specified on that column for them.

For games with two players, this presentation is by default configured to be similar to the standard presenation of
strategic games as tables, in which one player is assigned to be the “row” player and the other the “column” player.
However, Gambit permits a more flexible assignment, in which multiple players can be assigned to the rows and multiple
players to the columns. This is of particular use for games with more than two players. In print, a three-player strategic
game is usually presented as a collection of tables, with one player choosing the row, the second the column, and the
third the table. Gambit presents such games by hierarchially listing the strategies of one or more players on both rows
and columns.

The hierarchical presentation of the table is similar to that of a contingency table in a spreadsheet application. Here,
Alice, shown in red, has her strategies listed on the rows of the table, and Bob, shown in blue, has his strategies listed
on the columns of the table.

The assignment of players to row and column roles is fully customizable. To change the assignment of a player, drag
the person icon appearing to the left of the player’s name on the player toolbar to either of the areas in the payoff table
displaying the strategy labels.

For example, dragging the player icon from the left of Bob’s name in the list of players and dropping it on the right side
of Alice’s strategy label column changes the display of the game as in Here, the strategies are shown in a hierarchical
format, enumerating the outcomes of the game first by Alice’s (red) strategy choice, then by Bob’s (blue) strategy
choice.

Alternatively, the game can be displayed by listing the outcomes with Bob’s strategy choice first, then Alice’s. Drag
Bob’s player icon and drop it on the left side of Alice’s strategy choices, and the game display changes to organize the
outcomes first by Bob’s action, then by Alice’s.

The same dragging operation can be used to assign players to the columns. Assigning multiple players to the columns
gives the same hierarchical presentation of those players’ strategies. Dropping a player above another player’s strategy

4.3. Strategic games 79

_images/pd1.png
_images/pd2.png

Gambit Documentation, Release 16.1.1

labels assigns him to a higher level of the column player hierarchy; dropping a player below another player’s strategy
labels assigns him to a lower level of the column player hierarchy.

As the assignment of players in the row and column hierarchies changes, the ordering of the payoffs in each cell of the
table also changes. In all cases, the color-coding of the entries identifies the player to whom each payoff corresponds.
The ordering convention is chosen so that for a two player game in which one player is a row player and the other
a column player, the row player’s payoff is shown first, followed by the column player, which is the most common
convention in print.

4.3.2 Adding players and strategies

To add an additional player to the game, use the menu item Edit → Add player, or the corresponding toolbar icon . The
newly created player has one strategy, by default labeled with the number 1.

Gambit supports arbitrary numbers of strategies for each player. To add a new strategy for a player, click the new
strategy icon located to the left of that player’s name.

To edit the names of strategies, click on any cell in the strategic game table where the strategy label appears, and edit
the label using the edit control.

4.3.3 Editing payoffs

Payoffs for each player are specified individually for each contingency, or collection of strategies, in the game. To edit
any payoff in the table, click that cell in the table and edit the payoff. Pressing the Escape key (Esc) cancels any editing
of the payoff and restores the previous value.

To speed entry of many payoffs, as is typical when creating a new game, accepting a payoff entry via the Tab key
automatically moves the edit control to the next cell to the right. If the payoff is the last payoff listed in a row of the
table, the edit control wraps around to the first payoff in the next row; if the payoff is in the last row, the edit control
wraps around to the first payoff in the first row. So a strategic game payoff table can be quickly entered by clicking on
the first payoff in the upper-left cell of the table, inputting the payoff for the first (row) player, pressing the Tab key,
inputting the payoff for the second (column) player, pressing the Tab key, and so forth, until all the payoff entries in the
table have been filled.

80 Chapter 4. The graphical interface

_images/pd3.png

Gambit Documentation, Release 16.1.1

4.4 Investigating dominated strategies and actions

Selecting Tools → Dominance toggles the appearance of a toolbar which can be used to investigate the structure of
dominated strategies and actions.

4.4.1 Dominated actions in extensive game

In extensive games, the dominance toolbar controls the elimination of actions which are conditionally dominated.

Actions may be eliminated based on two criteria:

Strict dominance
The action is always worse than another, regardless of beliefs at the information set;

Strict or weak dominance
There is another action at the information set that is always at least as good as the action, and strictly better in
some cases.

For example, in the poker game, it is strictly dominated for Fred to choose Fold after Red. Clicking the next level icon
removes the dominated action from the game display.

The tree layout remains unchanged, including nodes which can only be reached using actions which have been elimi-
nated. To compress the tree to remove the unreachable nodes, check the box labeled Show only reachable nodes.

For this game, no further actions can be eliminated. In general, further steps of elimination can be done by again clicking
the next level icon. The toolbar keeps track of the number of levels of elimination currently shown; the previous level
icon moves up one level of elimination.

4.4. Investigating dominated strategies and actions 81

_images/pokerdom1.png
_images/pokerdom2.png
_images/pokerdom3.png

Gambit Documentation, Release 16.1.1

The elimination of multiple levels can be automated using the fast forward icon , which iteratively eliminates dominated
actions until no further actions can be eliminated. The rewind icon restores the display to the full game.

4.4.2 Dominated strategies in strategic games

The dominance toolbar operates in strategic games in the same way as the in the extensive game. Strategies can be
eliminated iteratively based on whether they are strictly or weakly dominated.

When the dominance toolbar is shown, the strategic game table contains indicators of strategies that are dominated. In
the prisoner’s dilemma, the Cooperate strategy is strictly dominated for both players. This strict dominance is indicated
by the solid “X” drawn across the corresponding strategy labels for both players. In addition, the payoffs corresponding
to the dominated strategies are also drawn with a solid “X” across them. Thus, any contingency in the table containing
at least one “X” is a contingency that can only be reached by at least one player playing a strategy that is dominated.

Strategies that are weakly dominated are similarly indicated, except the “X” shape is drawn using a thinner, dashed line
instead of the thick, solid line.

Clicking the next level icon removes the strictly dominated strategies from the display.

4.5 Computing Nash equilibria

Gambit offers broad support for computing Nash equilibria in both extensive and strategic games. To access the pro-
vided algorithms for computing equilibria, select Tools → Equilibrium, or click on the calculate icon on the toolbar.

82 Chapter 4. The graphical interface

_images/pddom1.png
_images/pddom2.png

Gambit Documentation, Release 16.1.1

4.5.1 Selecting the method of computing equilibria

The process of computing Nash equilibria in extensive and strategic games is similar. This section focuses on the case
of extensive games; the process for strategic games is analogous, except the extensive game-specific features, such as
displaying the profiles on the game tree, are not applicable.

Gambit provides guidance on the options for computing Nash equilibria in a dialog. The methods applicable to a
particular game depend on three criteria: the number of equilibria to compute, whether the computation is to be done
on the extensive or strategic games, and on details of the game, such as whether the game has two players or more, and
whether the game is constant-sum.

The first step in finding equilibria is to specify how many equilibria are to be found. Some algorithms for computing
equilibria are adapted to finding a single equilibrium, while others attempt to compute the whole equilibrium set. The
first drop-down in the dialog specifies how many equilibria to compute. In this drop-down there are options for as
many equilibria as possible and, for two-player games, all equilibria. For some games, there exist algorithms which
will compute many equilibria (relatively) efficiently, but are not guaranteed to find all equilibria.

To simplify this process of choosing the method to compute equilibria in the second drop-down, Gambit provides for
any game “recommended” methods for computing one, some, and all Nash equilibria, respectively. These methods
are selected based on experience as to the efficiency and reliability of the methods, and should generally work well on
most games. For more control over the process, the user can select from the second drop-down in the dialog one of the
appropriate methods for computing equilibria. This list only shows the methods which are appropriate for the game,
given the selection of how many equilibria to compute. More details on these methods are contained in Command-line
tools.

Finally, for extensive games, there is an option of whether to use the extensive or strategic game for computation. In
general, computation using the extensive game is preferred, since it is often a significantly more compact representation
of the strategic characeteristics of the game than the reduced strategic game is.

For even moderate sized games, computation of equilibrium can be a time-intensive process. Gambit runs all computa-
tions in the background, and displays a dialog showing all equilibria computed so far. The computation can be cancelled
at any time by clicking on the cancel icon , which terminates the computation but keeps any equilibria computed.

4.5. Computing Nash equilibria 83

_images/nash.png
_images/computing.png

Gambit Documentation, Release 16.1.1

4.5.2 Viewing computed profiles in the game

After computing equilibria, a panel showing the list of equilibria computed is displayed automatically. The display of
this panel can be toggled by selecting View → Profiles, or clicking on the playing card icon on the toolbar.

This game has a unique equilibrium in which Fred raises after Red with probability one, and raises with probability one-
third after Black. Alice, at her only information set, plays meet with probability two- thirds and raise with probability
one-third.

This equilibrium is displayed in a table in the profiles panel. If more than one equilibrium is found, this panel lists
all equilibria found. Equilibria computed are grouped by separate computational runs; computing equilibria using a
different method (or different settings) will add a second list of profiles. The list of profiles displayed is selected using
the drop-down at the top left of the profiles panel; in the screenshot, it is set to Profiles 1. A brief description of the
method used to compute the equilibria is listed across the top of the profiles panel.

The currently selected equilibrium is shown in bold in the profiles listing, and information about this equilibrium is
displayed in the extensive game. In the figure, the probabilities of selecting each action are displayed below each branch
of the tree. (This is the default Gambit setting; see Controlling the layout of the tree for configuring the labeling of
trees.) Each branch of the tree also shows a black line, the length of which is proportional to the probability with which
the action is played.

Clicking on any node in the tree displays additional information about the profile at that node. The player panel displays
information relevant to the selected node, including the payoff to all players conditional on reaching the node, as well
as information about Alice’s beliefs at the node.

The computed profiles can also be viewed in the reduced strategic game. Clicking on the strategic game icon changes
the view to the reduced strategic form of the game, and shows the equilibrium profiles converted to mixed strategies in
the strategic game.

84 Chapter 4. The graphical interface

_images/profiles.png
_images/beliefs.png

Gambit Documentation, Release 16.1.1

4.5.3 Computing quantal response equilibria

Gambit provides methods for computing the logit quantal response equilibrium correspondence for extensive games
[McKPal98] and strategic games [McKPal95], using the tracing method of [Tur05].

To compute the correspondence, select Tools → Qre. If viewing an extensive game, the agent quantal response equi-
librium correspondence is computed; if viewing a strategic game (including the reduced strategic game derived from
an extensive game), the correspondence is computed in mixed strategies.

The computed correspondence values can be saved to a CSV (comma- separated values) file by clicking the button
labeled Save correspondence to .csv file. This format is suitable for reading by a spreadsheet or graphing application.

4.5.4 Quantal response equilibria in strategic games (experimental)

There is an experimental graphing interface for quantal response equilibria in strategic games. The graph by default
plots the probabilities of all strategies, color- coded by player, as a function of the lambda parameter. The lambda
values on the horizontal axis are plotted using a sigmoid transformation; the Graph scaling value controls the shape of
this transformation. Lower values of the scaling give more graph space to lower values of lambda; higher values of the
scaling give more space to higher values of lambda.

The strategies graphed are indicated in the panel at the left of the window. Clicking on the checkbox next to a strategy
toggles whether it is displayed in the graph.

The data points computed in the correspondence can be viewed (as in the extensive game example above) by clicking
on the show data icon on the toolbar. The data points can be saved to a CSV file by clicking on the .

To zoom in on a portion of the graph of interest, hold down the left mouse button and drag a rectangle on the graph.
The plot window zooms in on the portion of the graph selected by that rectangle. To restore the graph view to the full
graph, click on the zoom to fit icon .

To print the graph as shown, click on the print icon . Note that this is very experimental, and the output may not be
very satisfactory yet.

4.5. Computing Nash equilibria 85

_images/qre.png
_images/logit.png

Gambit Documentation, Release 16.1.1

4.6 Printing and exporting games

Gambit supports (almost) WYSIWYG (what you see is what you get) output of both extensive and strategic games,
both to a printer and to several graphical formats. For all of these operations, the game is drawn exactly as currently
displayed on the screen, including whether the extensive or strategic representation is used, the layout, colors for players,
dominance and probability indicators, and so forth.

4.6.1 Printing a game

To print the game, press Ctrl-P, select File → Print, or click the printer icon on the toolbar. The game is scaled so that
the printout fits on one page, while maintaining the same ratio of horizontal to vertical size; that is, the scaling factor
is the same in both horizontal and vertical dimensions.

Note that especially for extensive games, one dimension of the tree is much larger than the other. Typically, the extent
of the tree vertically is much greater than its horizontal extent. Because the printout is scaled to fit on one page, printing
such a tree will generally result in what appears to be a thin line running vertically down the center of the page. This is
in fact the tree, shrunk so the large vertical dimension fits on the page, meaning that the horizontal dimension, scaled
at the same ratio, becomes very tiny.

4.6.2 Saving to a graphics file

Gambit supports export to five graphical file formats:

• Windows bitmaps (.bmp)

• JPEG, a lossy compressed format (.jpg , .jpeg)

• PNG, a lossless compressed format (.png); these are similar to GIFs

• Encapsulated PostScript (.ps)

• Scalable vector graphics (.svg)

To export a game to one of these formats, select File → Export, and select the corresponding menu entry.

The Windows bitmap and PNG formats are generally recommended for export, as they both are lossless formats, which
will reproduce the game image exactly as in Gambit. PNG files use a lossless compression algorithm, so they are
typically much smaller than the Windows bitmap for the same game. Not all image viewing and manipulation tools
handle PNG files; in those cases, use the Windows bitmap output instead. JPEG files use a compression algorithm that
only approximates the original version, which often makes it ill-suited for use in saving game images, since it often
leads to “blocking” in the image file.

For all three of these formats, the dimensions of the exported graphic are determined by the dimensions of the game
as drawn on screen. Image export is only supported for games which are less than about 65000 pixels in either the
horizontal or vertical dimensions. This is unlikely to be a practical problem, since such games are so large they usually
cannot be drawn in such a way that a human can make sense of them.

Encapsulated PostScript output is generally useful for inclusion in LaTeX and other scientific document preparation
systems. This is a vector-based output, and thus can be rescaled much more effectively than the other output formats.

86 Chapter 4. The graphical interface

CHAPTER

FIVE

SAMPLE GAMES

2x2x2.nfg
A three-player normal form game with two strategies per player. This game has nine Nash equilibria, which is
the maximal number of regular Nash equilibria possible for a game of this size. See McKelvey, Richard D. and
McLennan, Andrew (1997). The maximal number of regular totally mixed Nash equilibria. Journal of Economic
Theory 72(2): 411-425.

2x2x2-nau.nfg
A three-player normal form game with two strategies per player. This game has three pure strategy equilibria, two
equilibria which are incompletely mixed, and a continuum of completely mixed equilibria. This game appears
as an example in Nau, Robert, Gomez Canovas, Sabrina, and Hansen, Pierre (2004). On the geometry of Nash
equilibria and correlated equilibria. International Journal of Game Theory 32(4): 443-453.

bagwell.efg
Stackelberg leader game with imperfectly observed commitment, from Bagwell, Kyle (1993) Commitment and
observability in games. Games and Economic Behavior 8: 271-280.

bayes2a.efg
A twice-repeated Bayesian game, with two players, each having two types and two actions. This game also
illustrates the use of payoffs at nonterminal nodes in Gambit, which can substantially simplify the representation
of multi-stage games such as this.

cent3.efg
A three-stage centipede game, featuring an exogenous probability that one player is an altruistic type, who always
passes. See, for example, McKelvey, Richard D. and Palfrey, Thomas R. (1992) An experimental study of the
centipede game. Econometrica 60(4): 803-836.

condjury.efg
A three-person Condorcet jury game, after the analysis of Feddersen, Timothy and Pesendorfer, Wolfgang (1998)
Convicting the innocent: The inferiority of unanimous jury verdicts under strategic voting. American Political
Science Review 92(1): 23-35..

loopback.nfg
A game due to McKelvey which illustrates that the logit quantal response equilibrium correspondence can have
a “backward-bending” segment on the principal branch.

montyhal.efg
The famous Monty Hall problem: if Monty offers to let you switch doors, should you?

nim.efg
The classic game of Nim, which is a useful example of the value of backward induction. This version starts
with five stones. An interesting experimental study of this class of games is McKinney, C. Nicholas and Van
Huyck, John B. (2013) Eureka learning: Heuristics and response time in perfect information games. Games and
Economic Behavior 79: 223-232.

87

http://dx.doi.org/10.1006/jeth.1996.2214
http://dx.doi.org/10.1006/jeth.1996.2214
http://dx.doi.org/10.1006/jeth.1996.2214
http://dx.doi.org/10.1007/s001820300162
http://dx.doi.org/10.1007/s001820300162
http://dx.doi.org/10.1016/S0899-8256(05)80001-6
http://dx.doi.org/10.1016/S0899-8256(05)80001-6
http://www.jstor.org/stable/2951567
http://www.jstor.org/stable/2951567
http://www.jstor.org/stable/2585926
http://www.jstor.org/stable/2585926
http://www.jstor.org/stable/2585926
http://en.wikipedia.org/wiki/Monty_Hall_problem
http://en.wikipedia.org/wiki/Nim
http:dx.doi.org/10.1016/j.geb.2013.02.003
http:dx.doi.org/10.1016/j.geb.2013.02.003
http:dx.doi.org/10.1016/j.geb.2013.02.003

Gambit Documentation, Release 16.1.1

pbride.efg
A signaling game from Joel Watson’s Strategy textbook, modeling the confrontation in The Princess Bride be-
tween Humperdinck and Roberts in the bedchamber.

poker.efg
A simple game of one-card poker introduced in Myerson, Roger (1991) Game Theory: Analysis of Conflict.. A
bit unusually for poker, the “fold” action by a player with a strong hand counts for a win for that player, so folding
is only weakly rather than strictly dominated in this case.

4cards.efg
A slightly more complex poker example, contributed by Alix Martin.

spence.efg
A version of Spence’s classic job-market signaling game. This version comes from Joel Watson’s Strategy text-
book.

These games, and others, ship in the standard Gambit source distribution in the directory contrib/games.

88 Chapter 5. Sample games

http://books.wwnorton.com/books/detail.aspx?ID=4294969499
http://www.hup.harvard.edu/catalog.php?isbn=9780674341166
http://books.wwnorton.com/books/detail.aspx?ID=4294969499
http://books.wwnorton.com/books/detail.aspx?ID=4294969499

CHAPTER

SIX

FOR DEVELOPERS: BUILDING GAMBIT FROM SOURCE

This section covers instructions for building Gambit from source. This is for those who are interested in developing
Gambit, or who want to play around with the latest features before they make it into a pre-compiled binary version.

This section requires at least some familiarity with programming. Most users will want to stick with binary distribu-
tions; see Downloading Gambit for how to get the current version for your operating system.

6.1 General information

Gambit uses the standard autotools mechanism for configuring and building. This should be familiar to most users of
Un*ces and MacOS X.

If you are building from a source tarball, you just need to unpack the sources, change directory to the top level of the
sources (typically of the form gambit-xx.y.z), and do the usual

./configure
make
sudo make install

Command-line options are available to modify the configuration process; do ./configure –help for information. Of
these, the option which may be most useful is to disable the build of the graphical interface

By default Gambit will be installed in /usr/local. You can change this by replacing configure step with one of the form

./configure --prefix=/your/path/here

Note: The graphical interface relies on external calls to other programs built in this process, especially for the com-
putation of equilibria. It is strongly recommended that you install the Gambit executables to a directory in your path!

6.2 Building from git repository

If you want to live on the bleeding edge, you can get the latest version of the Gambit sources from the Gambit repository
on github.com, via

git clone https://github.com/gambitproject/gambit.git
cd gambit

After this, you will need to set up the build scripts by executing

89

Gambit Documentation, Release 16.1.1

aclocal
libtoolize
automake --add-missing
autoconf

For this, you will need to have automake, autoconf, and libtool2 installed on your system.

At this point, you can then continue with the configuration and build stages as in the previous section.

In the git repository, the branch master always points to the latest development version. New development should in
general always be based off this branch. Branches labeled maintVV, where VV is the version number, point to the latest
commit on a stable version.

6.3 For Windows users

For Windows users wanting to compile Gambit on their own, you’ll need to use either the Cygwin or MinGW environ-
ments. We do compilation and testing of Gambit on Windows using MinGW.

6.4 For OS X users

For building the command-line tools only, one should follow the instructions for Un*x/Linux platforms above.

6.5 The graphical interface and wxWidgets

Gambit requires wxWidgets version 3.1.x or higher. See the wxWidgets website at http://www.wxwidgets.org to down-
load this if you need it. Packages of this should be available for most Un*x users through their package managers (apt or
rpm). Note that you’ll need the appropriate -dev package for wxWidgets to get the header files needed to build Gambit.

Un*x users, please note that Gambit at this time only supports the GTK port of wxWidgets.

If wxWidgets it isn’t installed in a standard place (e.g., /usr or /usr/local), you’ll need to tell configure where to find it
with the –with-wx-prefix=PREFIX option, for example:

./configure --with-wx-prefix=/home/mylogin/wx

Finally, if you don’t want to build the graphical interface, you can either (a) simply not install wxWidgets, or (b) pass
the argument –disable-gui to the configure step, for example,

./configure --disable-gui

This will just build the command-line tools, and will not require a wxWidgets installation.

For OS X users, after the usual make step, run

make osx-bundle

This produces an application Gambit.app in the current directory, which can be run from its current location, or copied
elsewhere in the disk (such as /Applications). The application bundle includes the command-line executables.

90 Chapter 6. For developers: Building Gambit from source

http://www.wxwidgets.org

Gambit Documentation, Release 16.1.1

6.6 Building the Python extension

The pygambit Python package is in src/pygambit in the Gambit source tree. Building the extension follows the
standard approach. From the root directory of the source tree execute

python -m pip install .

There is a set of test cases in src/pygambit/tests, which can be run using nose2.

Once installed, simply import pygambit in your Python shell or script to get started.

6.6. Building the Python extension 91

Gambit Documentation, Release 16.1.1

92 Chapter 6. For developers: Building Gambit from source

CHAPTER

SEVEN

GAME REPRESENTATION FORMATS

This section documents the file formats recognized by Gambit. These file formats are text-based and designed to be
readable and editable by hand by humans to the extent possible, although programmatic tools to generate and manipulate
these files are almost certainly needed for all but the most trivial of games.

These formats can be viewed as being low-level. They define games explicitly in terms of their structure, and do
not support any sort of parameterization, macros, and the like. Thus, they are adapted largely to the type of input
required by the numerical methods for computing Nash equilibria, which only apply to a particular realization of a
game’s parameters. Higher-level tools, whether the graphical interface or scripting applications, are indicated for doing
parametric analysis and the like.

7.1 Conventions common to all file formats

Several conventions are common to the interpretation of the file formats listed below.

Whitespace is not significant. In general, whitespace (carriage returns, horizontal and vertical tabs, and spaces) do
not have an effect on the meaning of the file. The only exception is inside explicit double-quotes, where all characters
are significant. The formatting shown here is the same as generated by the Gambit code and has been chosen for its
readability; other formattings are possible (and legal).

Text labels. Most objects in an extensive game may be given textual labels. These are prominently used in the graphical
interface, for example, and it is encouraged for users to assign nonempty text labels to objects if the game is going to be
viewed in the graphical interface. In all cases, these labels are surrounded by the quotation character (“). The use of an
explicit “ character within a text label can be accomplished by preceding the embedded “ characters with a backwards
slash (). This is an alternate version of the first line of the example file, in which the title of the game contains the term
Bayesian game in quotation marks:

EFG 2 R "An example of a \"Bayesian game\"" { "Player 1" "Player 2" }

Numerical data. Numerical data, namely, the payoffs at outcomes, and the action probabilities for chance nodes, may
be expressed in integer, decimal, or rational formats. In all cases, numbers are understood by Gambit to be exact, and
represented as such internally. For example, the numerical entries 0.1 and 1/10 represent the same quantity.

In versions 0.97 and prior, Gambit distinguished between floating point and rational data. In these versions, the quantity
0.1 was represented interally as a floating-point number. In this case, since 0.1 does not have an exact representation in
binary floating point, the values 0.1 and 1/10 were not identical, and some methods for computing equilibria could give
(slightly) different results for games using one versus the other. In particular, using rational-precision methods on games
with the floating point numbers could give unexpected output, since the conversion of 0.1 first to floating-point then
to rational would involve roundoff error. This is largely of technical concern, and the current Gambit implementation
now behaves in such a way as to give the “expected” result when decimal numbers appear in the file format.

93

Gambit Documentation, Release 16.1.1

7.1.1 The extensive game (.efg) file format

The extensive game (.efg) file format has been used by Gambit, with minor variations, to represent extensive games
since circa 1994. It replaced an earlier format, which had no particular name but which had the conventional extension
.dt1. It is intended that some new formats will be introduced in the future; however, this format will be supported by
Gambit, possibly through the use of converter programs to those putative future formats, for the foreseeable future.

A sample file

This is a sample file illustrating the general format of the file. This file is similar to the one distributed in the Gambit
distribution under the name bayes1a.efg:

EFG 2 R "General Bayes game, one stage" { "Player 1" "Player 2" }
c "ROOT" 1 "(0,1)" { "1G" 0.500000 "1B" 0.500000 } 0
c "" 2 "(0,2)" { "2g" 0.500000 "2b" 0.500000 } 0
p "" 1 1 "(1,1)" { "H" "L" } 0
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 1 "Outcome 1" { 10.000000 2.000000 }
t "" 2 "Outcome 2" { 0.000000 10.000000 }
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 3 "Outcome 3" { 2.000000 4.000000 }
t "" 4 "Outcome 4" { 4.000000 0.000000 }
p "" 1 1 "(1,1)" { "H" "L" } 0
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 5 "Outcome 5" { 10.000000 2.000000 }
t "" 6 "Outcome 6" { 0.000000 10.000000 }
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 7 "Outcome 7" { 2.000000 4.000000 }
t "" 8 "Outcome 8" { 4.000000 0.000000 }
c "" 3 "(0,3)" { "2g" 0.500000 "2b" 0.500000 } 0
p "" 1 2 "(1,2)" { "H" "L" } 0
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 9 "Outcome 9" { 4.000000 2.000000 }
t "" 10 "Outcome 10" { 2.000000 10.000000 }
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 11 "Outcome 11" { 0.000000 4.000000 }
t "" 12 "Outcome 12" { 10.000000 2.000000 }
p "" 1 2 "(1,2)" { "H" "L" } 0
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 13 "Outcome 13" { 4.000000 2.000000 }
t "" 14 "Outcome 14" { 2.000000 10.000000 }
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 15 "Outcome 15" { 0.000000 4.000000 }
t "" 16 "Outcome 16" { 10.000000 0.000000 }

94 Chapter 7. Game representation formats

Gambit Documentation, Release 16.1.1

Structure of the prologue

The extensive gamefile consists of two parts: the prologue, or header, and the list of nodes, or body. In the example
file, the prologue is the first line. (Again, this is just a consequence of the formatting we have chosen and is not a
requirement of the file structure itself.)

The prologue is constructed as follows. The file begins with the token EFG , identifying it as an extensive gamefile.
Next is the digit 2 ; this digit is a version number. Since only version 2 files have been supported for more than a decade,
all files have a 2 in this position. Next comes the letter R . The letter R used to distinguish files which had rational
numbers for numerical data; this distinction is obsolete, so all new files should have R in this position.

The prologue continues with the title of the game. Following the title is a list of the names of the players defined in the
game. This list follows the convention found elsewhere in the file of being surrounded by curly braces and delimited
by whitespace (but not commas, semicolons, or any other character). The order of the players is significant; the first
entry in the list will be numbered as player 1, the second entry as player 2, and so forth. At the end of the prologue is
an optional text comment field.

Structure of the body (list of nodes)

The body of the file lists the nodes which comprise the game tree. These nodes are listed in the prefix traversal of the
tree. The prefix traversal for a subtree is defined as being the root node of the subtree, followed by the prefix traversal
of the subtree rooted by each child, in order from first to last. Thus, for the whole tree, the root node appears first,
followed by the prefix traversals of its child subtrees. For convenience, the game above follows the convention of one
line per node.

Each node entry begins with an unquoted character indicating the type of the node. There are three node types:

• c for a chance node

• p for a personal player node

• t for a terminal node

Each node type will be discussed individually below. There are three numbering conventions which are used to identify
the information structure of the tree. Wherever a player number is called for, the integer specified corresponds to the
index of the player in the player list from the prologue. The first player in the list is numbered 1, the second 2, and so
on. Information sets are identified by an arbitrary positive integer which is unique within the player. Gambit generates
these numbers as 1, 2, etc. as they appear first in the file, but there are no requirements other than uniqueness. The
same integer may be used to specify information sets for different players; this is not ambiguous since the player number
appears as well. Finally, outcomes are also arbitrarily numbered in the file format in the same way in which information
sets are, except for the special number 0 which indicates the null outcome.

Information sets and outcomes may (and frequently will) appear multiple times within a game. By convention, the
second and subsequent times an information set or outcome appears, the file may omit the descriptive information for
that information set or outcome. Alternatively, the file may specify the descriptive information again; however, it must
precisely match the original declaration of the information set or outcome. If any part of the description is omitted, the
whole description must be omitted.

Outcomes may appear at nonterminal nodes. In these cases, payoffs are interepreted as incremental payoffs; the payoff
to a player for a given path through the tree is interpreted as the sum of the payoffs at the outcomes encountered on
that path (including at the terminal node). This is ideal for the representation of games with well- defined”stages”; see,
for example, the file bayes2a.efg in the Gambit distribution for a two-stage example of the Bayesian game represented
previously.

In the following lists, fields which are omittable according to the above rules are indicated by the label (optional).

Format of chance (nature) nodes. Entries for chance nodes begin with the character c . Following this, in order, are

• a text string, giving the name of the node

7.1. Conventions common to all file formats 95

Gambit Documentation, Release 16.1.1

• a positive integer specifying the information set number

• (optional) the name of the information set

• (optional) a list of actions at the information set with their corresponding probabilities

• a nonnegative integer specifying the outcome

• (optional)the payoffs to each player for the outcome

Format of personal (player) nodes. Entries for personal player decision nodes begin with the character p . Following
this, in order, are:

• a text string, giving the name of the node

• a positive integer specifying the player who owns the node

• a positive integer specifying the information set

• (optional) the name of the information set

• (optional) a list of action names for the information set

• a nonnegative integer specifying the outcome

• (optional) the name of the outcome

• the payoffs to each player for the outcome

Format of terminal nodes. Entries for terminal nodes begin with the character t . Following this, in order, are:

• a text string, giving the name of the node

• a nonnegative integer specifying the outcome

• (optional) the name of the outcome

• the payoffs to each player for the outcome

There is no explicit end-of-file delimiter for the file.

7.1.2 The strategic game (.nfg) file format, payoff version

This file format defines a strategic N-player game. In this version, the payoffs are listed in a tabular format. See the next
section for a version of this format in which outcomes can be used to identify an equivalence among multiple strategy
profiles.

A sample file

This is a sample file illustrating the general format of the file. This file is distributed in the Gambit distribution under
the name e02.nfg:

NFG 1 R "Selten (IJGT, 75), Figure 2, normal form"
{ "Player 1" "Player 2" } { 3 2 }

1 1 0 2 0 2 1 1 0 3 2 0

96 Chapter 7. Game representation formats

Gambit Documentation, Release 16.1.1

Structure of the prologue

The prologue is constructed as follows. The file begins with the token NFG , identifying it as a strategic gamefile. Next
is the digit 1 ; this digit is a version number. Since only version 1 files have been supported for more than a decade,
all files have a 1 in this position. Next comes the letter R . The letter R used to distinguish files which had rational
numbers for numerical data; this distinction is obsolete, so all new files should have R in this position.

The prologue continues with the title of the game. Following the title is a list of the names of the players defined in the
game. This list follows the convention found elsewhere in the file of being surrounded by curly braces and delimited
by whitespace (but not commas, semicolons, or any other character). The order of the players is significant; the first
entry in the list will be numbered as player 1, the second entry as player 2, and so forth.

Following the list of players is a list of positive integers. This list specifies the number of strategies available to each
player, given in the same order as the players are listed in the list of players.

The prologue concludes with an optional text comment field.

Structure of the body (list of payoffs)

The body of the format lists the payoffs in the game. This is a “flat” list, not surrounded by braces or other punctuation.

The assignment of the numeric data in this list to the entries in the strategic game table proceeds as follows. The
list begins with the strategy profile in which each player plays their first strategy. The payoffs to all players in this
contingency are listed in the same order as the players are given in the prologue. This, in the example file, the first two
payoff entries are 1 1 , which means, when both players play their first strategy, player 1 receives a payoff of 1, and
player 2 receives a payoff of 1.

Next, the strategy of the first player is incremented. Thus, player 1’s strategy is incremented to his second strategy. In
this case, when player 1 plays his second strategy and player 2 his first strategy, the payoffs are 0 2 : a payoff of 0 to
player 1 and a payoff of 2 to player 2.

Now the strategy of the first player is again incremented. Thus, the first player is playing his third strategy, and the
second player his first strategy; the payoffs are again 0 2 .

Now, the strategy of the first player is incremented yet again. But, the first player was already playing strategy number
3 of 3. Thus, his strategy now “rolls over” to 1, and the strategy of the second player increments to 2. Then, the next
entries 1 1 correspond to the payoffs of player 1 and player 2, respectively, in the case where player 1 plays his second
strategy, and player 2 his first strategy.

In general, the ordering of contingencies is done in the same way that we count: incrementing the least-significant digit
place in the number first, and then incrementing more significant digit places in the number as the lower ones “roll
over.” The only differences are that the counting starts with the digit 1, instead of 0, and that the “base” used for each
digit is not 10, but instead is the number of strategies that player has in the game.

7.1.3 The strategic game (.nfg) file format, outcome version

This file format defines a strategic N-player game. In this version, the payoffs are defined by means of outcomes, which
may appear more than one place in the game table. This may give a more compact means of representing a game where
many different strategy combinations map to the same consequences for the players. For a version of this format in
which payoffs are listed explicitly, without identification by outcomes, see the previous section.

7.1. Conventions common to all file formats 97

Gambit Documentation, Release 16.1.1

A sample file

This is a sample file illustrating the general format of the file. This file defines the same game as the example in the
previous section:

NFG 1 R "Selten (IJGT, 75), Figure 2, normal form" { "Player 1" "Player 2" }

{
{ "1" "2" "3" }
{ "1" "2" }
}

{
{ "" 1, 1 }
{ "" 0, 2 }
{ "" 0, 2 }
{ "" 1, 1 }
{ "" 0, 3 }
{ "" 2, 0 }
}
1 2 3 4 5 6

Structure of the prologue

The prologue is constructed as follows. The file begins with the token NFG , identifying it as a strategic gamefile. Next
is the digit 1 ; this digit is a version number. Since only version 1 files have been supported for more than a decade,
all files have a 1 in this position. Next comes the letter R . The letter R used to distinguish files which had rational
numbers for numerical data; this distinction is obsolete, so all new files should have R in this position.

The prologue continues with the title of the game. Following the title is a list of the names of the players defined in the
game. This list follows the convention found elsewhere in the file of being surrounded by curly braces and delimited
by whitespace (but not commas, semicolons, or any other character). The order of the players is significant; the first
entry in the list will be numbered as player 1, the second entry as player 2, and so forth.

Following the list of players is a list of strategies. This is a nested list; each player’s strategies are given as a list of text
labels, surrounded by curly braces.

The nested strategy list is followed by an optional text comment field.

The prologue closes with a list of outcomes. This is also a nested list. Each outcome is specified by a text string, followed
by a list of numerical payoffs, one for each player defined. The payoffs may optionally be separated by commas, as in
the example file. The outcomes are implicitly numbered in the order they appear; the first outcome is given the number
1, the second 2, and so forth.

Structure of the body (list of outcomes)

The body of the file is a list of outcome indices. These are presented in the same lexicographic order as the payoffs in
the payoff file format; please see the documentation of that format for the description of the ordering. For each entry in
the table, a nonnegative integer is given, corresponding to the outcome number assigned as described in the prologue
section. The special outcome number 0 is reserved for the “null” outcome, which is defined as a payoff of zero to all
players. The number of entries in this list, then, should be the same as the product of the number of strategies for all
players in the game.

98 Chapter 7. Game representation formats

Gambit Documentation, Release 16.1.1

7.1.4 The action graph game (.agg) file format

Action graph games (AGGs) are a compact representation of simultaneous-move games with structured utility func-
tions. For more information on AGGs, the following paper gives a comprehensive discussion.

A.X. Jiang, K. Leyton-Brown and N. Bhat, Action-Graph Games, Games and Economic Behavior, Volume
71, Issue 1, January 2011, Pages 141-173.

Each file in this format describes an action graph game. In order for the file to be recognized as AGG by GAMBIT, the
initial line of the file should be:

#AGG

The rest of the file consists of 8 sections, separated by whitespaces. Lines with starting ‘#’ are treated as comments
and are allowed between sections.

1. The number of players, n.

2. The number of action nodes, |S|.

3. The number of function nodes, |P|.

4. Size of action set for each player. This is a row of n integers:

|S1| |S2| |Sn|

5. Each Player’s action set. We have N rows; row i has |Si| integers in ascending order, which are indices of Action
nodes. Action nodes are indexed from 0 to |S|-1.

6. The Action Graph. We have |S| + |P| nodes, indexed from 0 to |S| + |P|-1. The function nodes are indexed after
the action nodes. The graph is represented as (|S| + |P|) neighbor lists, one list per row. Rows 0 to |S| - 1 are for
action nodes; rows |S| to |S| + |P|-1 are for function nodes. In each row, the first number |v| specifies the number
of neighbors of the node. Then follows |v| numbers, corresponding to the indices of the neighbors.

We require that each function node has at least one neighbor, and the neighbors of function nodes are action
nodes. The action graph restricted to the function nodes has to be a directed acyclic graph (DAG).

7. Signatures of functions. This is |P| rows, each specifying the mapping f_p that maps from the configuration of
the function node p’s neighbors to an integer for p’s “action count”. Each function is specified by its “signature”
consisting of an integer type, possibly followed by further parameters. Several types of mapping are implemented:

• Types 0-3 require no further input.

– Type 0: Sum. i.e. The action count of a function node p is the sum of the action counts of p’s neighbors.

– Type 1: Existence: boolean for whether the sum of the counts of neighbors are positive.

– Type 2: The index of the neighbor with the highest index that has non-zero counts, or |S| + |P| if none
applies.

– Type 3: The index of the neighbor with the lowest index that has non-zero counts, or |S| + |P| if none
applies.

• Types 10-13 are extended versions of type 0-3, each requiring further parameters of an integer default value
and a list of weights, |S| integers enclosed in square brackets. Each action node is thus associated with an
integer weight.

– Type 10: Extended Sum. Each instance of an action in p’s neighborhood being chosen contributes the
weight of that action to the sum. These are added to the default value.

– Type 11: Extended Existence: boolean for whether the extended sum is positive. The input default
value and weights are required to be nonnegative.

7.1. Conventions common to all file formats 99

http://www.cs.ubc.ca/~jiang/papers/AGG.pdf

Gambit Documentation, Release 16.1.1

– Type 12: The weight of the neighbor with the highest index that has non-zero counts, or the default
value if none applies.

– Type 13: The weight of the neighbor with the lowest index that has non-zero counts, or the default
value if none applies.

The following is an example of the signatures for an AGG with three action nodes and two function nodes:

2
10 0 [2 3 4]

8. The payoff function for each action node. So we have |S| subblocks of numbers. Payoff function for action s is a
mapping from configurations to real numbers. Configurations are represented as a tuple of integers; the size of
the tuple is the size of the neighborhood of s. Each configuration specifies the action counts for the neighbors of
s, in the same order as the neighbor list of s.

The first number of each subblock specifies the type of the payoff function. There are multiple ways of represent-
ing payoff functions; we (or other people) can extend the file format by defining new types of payoff functions.
We define two basic types:

Type 0
The complete representation. The set of possible configurations can be derived from the action graph. This
set of configurations can also be sorted in lexicographical order. So we can just specify the payoffs without
explicitly giving the configurations. So we just need to give one row of real numbers, which correspond to
payoffs for the ordered set of configurations.

If action s is in multiple players’ action sets (say players i, j), then it is possible that the set of possible
configurations given si is different from the set of possible configurations given sj. In such cases, we need
to specify payoffs for the union of the sets of configurations (sorted in lexicographical order).

Type 1
The mapping representation, in which we specify the configurations and the corresponding payoffs. For
the payoff function of action s, first give Delta_s, the number of elements in the mapping. Then follows
Delta_s rows. In each row, first specify the configuration, which is a tuple of integers, enclosed by a pair of
brackets “[” and “]”, then the payoff. For example, the following specifies a payoff function of type 1, with
two configurations:

1 2
[1 0] 2.5
[1 1] -1.2

7.1.5 The Bayesian action graph game (.bagg) format

Bayesian action graph games (BAGGs) are a compact representation of Bayesian (i.e., incomplete-information) games.
For more information on BAGGs, the following paper gives a detailed discussion.

A.X. Jiang and K. Leyton-Brown, Bayesian Action-Graph Games. NIPS, 2010.

Each file in this format describes a BAGG. In order for the file to be recognized as BAGG by GAMBIT, the initial line
of the file should be:

#BAGG

The rest of the file consists of the following sections, separated by whitespaces. Lines with starting ‘#’ are treated as
comments and are allowed between sections.

1. The number of Players, n.

100 Chapter 7. Game representation formats

http://www.cs.ubc.ca/~jiang/papers/BAGG.pdf

Gambit Documentation, Release 16.1.1

2. The number of action nodes, |S|.

3. The number of function nodes, |P|.

4. The number of types for each player, as a row of n integers.

5. Type distribution for each player. The distributions are assumed to be independent. Each distribution is repre-
sented as a row of real numbers. The following example block gives the type distributions for a BAGG with two
players and two types for each player:

0.5 0.5
0.2 0.8

6. Size of type-action set for each player’s each type.

7. Type-action set for each player’s each type. Each type-action set is represented as a row of integers in ascending
order, which are indices of action nodes. Action nodes are indexed from 0 to |S|-1.

8. The action graph: same as in `the AGG format`_.

9. types of functions: same as in `the AGG format`_.

10. utility function for each action node: same as in `the AGG format`_.

7.1. Conventions common to all file formats 101

Gambit Documentation, Release 16.1.1

102 Chapter 7. Game representation formats

CHAPTER

EIGHT

BIBLIOGRAPHY

8.1 Articles on computation of Nash equilibria

8.2 General game theory articles and texts

8.3 Textbooks and general reference

103

Gambit Documentation, Release 16.1.1

104 Chapter 8. Bibliography

CHAPTER

NINE

DETAILED TABLE OF CONTENTS

105

Gambit Documentation, Release 16.1.1

106 Chapter 9. Detailed table of contents

BIBLIOGRAPHY

[Kre90] Kreps, D. (1990) “Corporate Culture and Economic Theory.” In J. Alt and K. Shepsle, eds., Perspectives
on Positive Political Economy, Cambridge University Press.

[Mye91] Myerson, Roger B. (1991) Game Theory: Analysis of Conflict. Cambridge: Harvard University Press.

[RUW08] Reiley, David H., Michael B. Urbancic and Mark Walker. (2008) “Stripped-down poker: A classroom game
with signaling and bluffing.” The Journal of Economic Education 39(4): 323-341.

[BlaTur23] Bland, J. R. and Turocy, T. L., 2023. Quantal response equilibrium as a structural model for estimation:
The missing manual. SSRN working paper 4425515.

[Eav71] B. C. Eaves, “The linear complementarity problem”, 612-634, Management Science , 17, 1971.

[GovWil03] Govindan, Srihari and Robert Wilson. (2003) “A Global Newton Method to Compute Nash Equilibria.”
Journal of Economic Theory 110(1): 65-86.

[GovWil04] Govindan, Srihari and Robert Wilson. (2004) “Computing Nash Equilibria by Iterated Polymatrix Ap-
proximation.” Journal of Economic Dynamics and Control 28: 1229-1241.

[Jiang11] A. X. Jiang, K. Leyton-Brown, and N. Bhat. (2011) “Action-Graph Games.” Games and Economic Behavior
71(1): 141-173.

[KolMegSte94] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel (1996). “Efficient computation of equi-
libria for extensive two-person games.” Games and Economic Behavior 14: 247-259.

[LemHow64] C. E. Lemke and J. T. Howson, “Equilibrium points of bimatrix games”, 413-423, Journal of the Society
of Industrial and Applied Mathematics , 12, 1964.

[Man64] O. Mangasarian, “Equilibrium points in bimatrix games”, 778-780, Journal of the Society for Industrial
and Applied Mathematics, 12, 1964.

[McK91] Richard McKelvey, A Liapunov function for Nash equilibria, 1991, California Institute of Technology.

[McKMcL96] Richard McKelvey and Andrew McLennan, “Computation of equilibria in finite games”, 87-142, Hand-
book of Computational Economics , Edited by H. Amman, D. Kendrick, J. Rust, Elsevier, 1996.

[PNS04] Ryan Porter, Eugene Nudelman, and Yoav Shoham. “Simple search methods for finding a Nash equilib-
rium.” Games and Economic Behavior 664-669, 2004.

[Ros71] J. Rosenmuller, “On a generalization of the Lemke-Howson Algorithm to noncooperative n-person games”,
73-79, SIAM Journal of Applied Mathematics, 21, 1971.

[Sha74] Lloyd Shapley, “A note on the Lemke-Howson algorithm”, 175-189, Mathematical Programming Study ,
1, 1974.

[Tur05] Theodore L. Turocy, “A dynamic homotopy interpretation of the logistic quantal response equilibrium
correspondence”, 243-263, Games and Economic Behavior, 51, 2005.

107

Gambit Documentation, Release 16.1.1

[Tur10] Theodore L. Turocy, “Using Quantal Response to Compute Nash and Sequential Equilibria.” Economic
Theory 42(1): 255-269, 2010.

[VTH87] G. van der Laan, A. J. J. Talman, and L. van Der Heyden, “Simplicial variable dimension algorithms for
solving the nonlinear complementarity problem on a product of unit simplices using a general labelling”,
377-397, Mathematics of Operations Research , 1987.

[Wil71] Robert Wilson, “Computing equilibria of n-person games”, 80-87, SIAM Applied Math, 21, 1971.

[Yam93] Y. Yamamoto, 1993, “A Path-Following Procedure to Find a Proper Equilibrium of Finite Games “, Inter-
national Journal of Game Theory .

[Harsanyi1967a] John Harsanyi, “Games of Incomplete Information Played By Bayesian Players I”, 159-182, Man-
agement Science , 14, 1967.

[Harsanyi1967b] John Harsanyi, “Games of Incomplete Information Played By Bayesian Players II”, 320-334, Man-
agement Science , 14, 1967.

[Harsanyi1968] John Harsanyi, “Games of Incomplete Information Played By Bayesian Players III”, 486-502, Man-
agement Science , 14, 1968.

[KreWil82] David Kreps and Robert Wilson, “Sequential Equilibria”, 863-894, Econometrica , 50, 1982.

[McKPal95] Richard McKelvey and Tom Palfrey, “Quantal response equilibria for normal form games”, 6-38, Games
and Economic Behavior , 10, 1995.

[McKPal98] Richard McKelvey and Tom Palfrey, “Quantal response equilibria for extensive form games”, 9-41, Ex-
perimental Economics , 1, 1998.

[Mye78] Roger Myerson, “Refinements of the Nash equilibrium concept”, 73-80, International Journal of Game
Theory , 7, 1978.

[Nas50] John Nash, “Equilibrium points in n-person games”, 48-49, Proceedings of the National Academy of Sci-
ences , 36, 1950.

[Och95] Jack Ochs, “Games with unique, mixed strategy equilibria: An experimental study”, Games and Economic
Behavior 10: 202-217, 1995.

[Sel75] Reinhard Selten, Reexamination of the perfectness concept for equilibrium points in extensive games ,
25-55, International Journal of Game Theory , 4, 1975.

[vanD83] Eric van Damme, 1983, Stability and Perfection of Nash Equilibria , Springer-Verlag, Berlin.

[Mye91] Roger Myerson, 1991, Game Theory : Analysis of Conflict , Harvard University Press.

108 Bibliography

INDEX

Symbols
__getitem__() (pygam-

bit.gambit.MixedBehaviorProfile method),
59

__getitem__() (pygambit.gambit.MixedStrategyProfile
method), 53

__setitem__() (pygam-
bit.gambit.MixedBehaviorProfile method),
59

__setitem__() (pygambit.gambit.MixedStrategyProfile
method), 54

-A
gambit-enumpure command line option, 7

-D
gambit-enummixed command line option, 9
gambit-enumpure command line option, 7
gambit-lcp command line option, 10
gambit-lp command line option, 11

-L
gambit-enummixed command line option, 9

-O
gambit-convert command line option, 17

-P
gambit-enumpure command line option, 7
gambit-lcp command line option, 10
gambit-lp command line option, 11

-S
gambit-enumpure command line option, 7
gambit-lcp command line option, 10
gambit-liap command line option, 12
gambit-logit command line option, 14
gambit-lp command line option, 11

-a
gambit-logit command line option, 14

-c
gambit-convert command line option, 17
gambit-enummixed command line option, 9

-d
gambit-enummixed command line option, 8
gambit-gnm command line option, 15
gambit-ipa command line option, 16
gambit-lcp command line option, 10

gambit-liap command line option, 12
gambit-logit command line option, 14
gambit-lp command line option, 11

-e
gambit-logit command line option, 15

-g
gambit-simpdiv command line option, 13

-h
gambit-convert command line option, 17
gambit-enummixed command line option, 9
gambit-enumpure command line option, 8
gambit-gnm command line option, 15
gambit-ipa command line option, 16
gambit-lcp command line option, 10
gambit-liap command line option, 12
gambit-logit command line option, 15
gambit-lp command line option, 11
gambit-simpdiv command line option, 13

-i
gambit-liap command line option, 12

-l
gambit-logit command line option, 14

-m
gambit-logit command line option, 14

-n
gambit-gnm command line option, 15
gambit-liap command line option, 12
gambit-simpdiv command line option, 13

-q
gambit-convert command line option, 17
gambit-enummixed command line option, 9
gambit-enumpure command line option, 8
gambit-gnm command line option, 15
gambit-ipa command line option, 16
gambit-lcp command line option, 10
gambit-liap command line option, 12
gambit-lp command line option, 11
gambit-simpdiv command line option, 13

-r
gambit-convert command line option, 17
gambit-simpdiv command line option, 13

-s

109

Gambit Documentation, Release 16.1.1

gambit-gnm command line option, 15
gambit-liap command line option, 12
gambit-logit command line option, 14
gambit-simpdiv command line option, 13

-v
gambit-gnm command line option, 16
gambit-liap command line option, 12
gambit-simpdiv command line option, 13

A
Action (class in pygambit.gambit), 33
action_value() (pygam-

bit.gambit.MixedBehaviorProfile method),
60

actions (pygambit.gambit.Game attribute), 45
actions (pygambit.gambit.Player attribute), 47
add_outcome() (pygambit.gambit.Game method), 42
add_player() (pygambit.gambit.Game method), 41
add_strategy() (pygambit.gambit.Game method), 43
append_infoset() (pygambit.gambit.Game method),

38
append_move() (pygambit.gambit.Game method), 37
as_behavior() (pygambit.gambit.MixedStrategyProfile

method), 55
as_strategy() (pygam-

bit.gambit.MixedBehaviorProfile method),
63

B
belief() (pygambit.gambit.MixedBehaviorProfile

method), 62

C
children (pygambit.gambit.Node attribute), 49
comment (pygambit.gambit.Game attribute), 44
contingencies (pygambit.gambit.Game attribute), 46
copy() (pygambit.gambit.MixedBehaviorProfile

method), 63
copy() (pygambit.gambit.MixedStrategyProfile method),

56
copy_tree() (pygambit.gambit.Game method), 38

D
delete_outcome() (pygambit.gambit.Game method),

42
delete_parent() (pygambit.gambit.Game method), 39
delete_strategy() (pygambit.gambit.Game method),

43
delete_tree() (pygambit.gambit.Game method), 39

E
enummixed_solve() (in module pygambit.nash), 65
enumpure_solve() (in module pygambit.nash), 64

F
fit_empirical() (in module pygambit.qre), 69
fit_fixedpoint() (in module pygambit.qre), 69
from_arrays() (pygambit.gambit.Game class method),

35
from_dict() (pygambit.gambit.Game class method), 35

G
gambit-convert command line option

-O, 17
-c, 17
-h, 17
-q, 17
-r, 17

gambit-enummixed command line option
-D, 9
-L, 9
-c, 9
-d, 8
-h, 9
-q, 9

gambit-enumpure command line option
-A, 7
-D, 7
-P, 7
-S, 7
-h, 8
-q, 8

gambit-gnm command line option
-d, 15
-h, 15
-n, 15
-q, 15
-s, 15
-v, 16

gambit-ipa command line option
-d, 16
-h, 16
-q, 16

gambit-lcp command line option
-D, 10
-P, 10
-S, 10
-d, 10
-h, 10
-q, 10

gambit-liap command line option
-S, 12
-d, 12
-h, 12
-i, 12
-n, 12
-q, 12

110 Index

Gambit Documentation, Release 16.1.1

-s, 12
-v, 12

gambit-logit command line option
-S, 14
-a, 14
-d, 14
-e, 15
-h, 15
-l, 14
-m, 14
-s, 14

gambit-lp command line option
-D, 11
-P, 11
-S, 11
-d, 11
-h, 11
-q, 11

gambit-simpdiv command line option
-g, 13
-h, 13
-n, 13
-q, 13
-r, 13
-s, 13
-v, 13

Game (class in pygambit.gambit), 28
game (pygambit.gambit.MixedBehaviorProfile attribute),

59
game (pygambit.gambit.MixedStrategyProfile attribute),

53
game (pygambit.gambit.Node attribute), 48
game (pygambit.gambit.Outcome attribute), 48
game (pygambit.gambit.Player attribute), 47
gnm_solve() (in module pygambit.nash), 68

I
Infoset (class in pygambit.gambit), 32
infoset (pygambit.gambit.Node attribute), 50
infoset_prob() (pygam-

bit.gambit.MixedBehaviorProfile method),
62

infoset_value() (pygam-
bit.gambit.MixedBehaviorProfile method),
61

infosets (pygambit.gambit.Game attribute), 45
infosets (pygambit.gambit.Player attribute), 47
insert_infoset() (pygambit.gambit.Game method),

38
insert_move() (pygambit.gambit.Game method), 38
ipa_solve() (in module pygambit.nash), 68
is_chance (pygambit.gambit.Player attribute), 47
is_const_sum (pygambit.gambit.Game attribute), 44

is_defined_at() (pygam-
bit.gambit.MixedBehaviorProfile method),
62

is_perfect_recall (pygambit.gambit.Game attribute),
44

is_subgame_root (pygambit.gambit.Node attribute), 49
is_successor_of() (pygambit.gambit.Node method),

50
is_terminal (pygambit.gambit.Node attribute), 49
is_tree (pygambit.gambit.Game attribute), 44

L
label (pygambit.gambit.Node attribute), 48
label (pygambit.gambit.Outcome attribute), 48
label (pygambit.gambit.Player attribute), 46
lcp_solve() (in module pygambit.nash), 66
leave_infoset() (pygambit.gambit.Game method), 40
liap_solve() (in module pygambit.nash), 66
liap_value() (pygambit.gambit.MixedBehaviorProfile

method), 62
liap_value() (pygambit.gambit.MixedStrategyProfile

method), 55
logit_solve() (in module pygambit.nash), 67
LogitQREMixedStrategyFitResult (class in pygam-

bit.qre), 70
lp_solve() (in module pygambit.nash), 65

M
max_payoff (pygambit.gambit.Game attribute), 45
max_payoff (pygambit.gambit.Player attribute), 47
min_payoff (pygambit.gambit.Game attribute), 45
min_payoff (pygambit.gambit.Player attribute), 47
mixed_behavior_profile() (pygambit.gambit.Game

method), 51
mixed_strategy_profile() (pygambit.gambit.Game

method), 51
MixedBehaviorProfile (class in pygambit.gambit), 57
MixedStrategyProfile (class in pygambit.gambit), 52
move_tree() (pygambit.gambit.Game method), 39

N
new_table() (pygambit.gambit.Game class method), 34
new_tree() (pygambit.gambit.Game class method), 34
next_sibling (pygambit.gambit.Node attribute), 49
Node (class in pygambit.gambit), 31
node_value() (pygambit.gambit.MixedBehaviorProfile

method), 61
nodes() (pygambit.gambit.Game method), 46
normalize() (pygambit.gambit.MixedBehaviorProfile

method), 63
normalize() (pygambit.gambit.MixedStrategyProfile

method), 56
number (pygambit.gambit.Player attribute), 46

Index 111

Gambit Documentation, Release 16.1.1

O
Outcome (class in pygambit.gambit), 31
outcome (pygambit.gambit.Node attribute), 48
outcomes (pygambit.gambit.Game attribute), 44

P
parent (pygambit.gambit.Node attribute), 49
parse_game() (pygambit.gambit.Game class method),

36
payoff() (pygambit.gambit.MixedBehaviorProfile

method), 60
payoff() (pygambit.gambit.MixedStrategyProfile

method), 54
Player (class in pygambit.gambit), 30
player (pygambit.gambit.Node attribute), 50
players (pygambit.gambit.Game attribute), 44
prior_action (pygambit.gambit.Node attribute), 49
prior_sibling (pygambit.gambit.Node attribute), 49

R
randomize() (pygambit.gambit.MixedBehaviorProfile

method), 63
randomize() (pygambit.gambit.MixedStrategyProfile

method), 56
read_game() (pygambit.gambit.Game class method), 36
realiz_prob() (pygam-

bit.gambit.MixedBehaviorProfile method),
61

regret() (pygambit.gambit.MixedBehaviorProfile
method), 60

regret() (pygambit.gambit.MixedStrategyProfile
method), 54

reveal() (pygambit.gambit.Game method), 40
root (pygambit.gambit.Game attribute), 45

S
set_chance_probs() (pygambit.gambit.Game method),

41
set_infoset() (pygambit.gambit.Game method), 40
set_outcome() (pygambit.gambit.Game method), 42
set_player() (pygambit.gambit.Game method), 40
simpdiv_solve() (in module pygambit.nash), 67
strategies (pygambit.gambit.Game attribute), 45
strategies (pygambit.gambit.Player attribute), 47
Strategy (class in pygambit.gambit), 33
strategy_value() (pygam-

bit.gambit.MixedStrategyProfile method),
55

strategy_value_deriv() (pygam-
bit.gambit.MixedStrategyProfile method),
55

support_profile() (pygambit.gambit.Game method),
51

T
title (pygambit.gambit.Game attribute), 44

U
undominated_strategies_solve() (in module

pygambit.supports), 63

W
write() (pygambit.gambit.Game method), 36

112 Index

	An overview of Gambit
	What is Gambit?
	A brief history of Gambit
	Key features of Gambit
	Limitations of Gambit
	Developers
	Downloading Gambit
	Bug reports

	Command-line tools
	gambit-enumpure: Enumerate pure-strategy equilibria of a game
	gambit-enummixed: Enumerate equilibria in a two-player game
	gambit-lcp: Compute equilibria in a two-player game via linear complementarity
	gambit-lp: Compute equilibria in a two-player constant-sum game via linear programming
	gambit-liap: Compute Nash equilibria using function minimization
	gambit-simpdiv: Compute equilibria via simplicial subdivision
	gambit-logit: Compute quantal response equilbria
	gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method
	gambit-ipa: Compute Nash equilibria in a strategic game using iterated polymatrix approximation
	gambit-convert: Convert games among various representations

	pygambit Python package
	User guide
	Example: One-shot trust game with binary actions
	Example: A one-card poker game with private information
	Building a strategic game
	Representation of numerical data of a game
	Reading a game from a file
	Computing Nash equilibria
	Estimating quantal response equilibria

	API documentation
	Representation of games
	pygambit.gambit.Game
	pygambit.gambit.Player
	pygambit.gambit.Outcome
	pygambit.gambit.Node
	pygambit.gambit.Infoset
	pygambit.gambit.Action
	pygambit.gambit.Strategy
	Creating, reading, and writing games
	pygambit.gambit.Game.new_tree
	pygambit.gambit.Game.new_table
	pygambit.gambit.Game.from_arrays
	pygambit.gambit.Game.from_dict
	pygambit.gambit.Game.read_game
	pygambit.gambit.Game.parse_game
	pygambit.gambit.Game.write

	Transforming game trees
	pygambit.gambit.Game.append_move
	pygambit.gambit.Game.append_infoset
	pygambit.gambit.Game.insert_move
	pygambit.gambit.Game.insert_infoset
	pygambit.gambit.Game.copy_tree
	pygambit.gambit.Game.move_tree
	pygambit.gambit.Game.delete_parent
	pygambit.gambit.Game.delete_tree

	Transforming game information structure
	pygambit.gambit.Game.set_player
	pygambit.gambit.Game.set_infoset
	pygambit.gambit.Game.leave_infoset
	pygambit.gambit.Game.reveal
	pygambit.gambit.Game.set_chance_probs

	Transforming game components
	pygambit.gambit.Game.add_player
	pygambit.gambit.Game.add_outcome
	pygambit.gambit.Game.delete_outcome
	pygambit.gambit.Game.set_outcome
	pygambit.gambit.Game.add_strategy
	pygambit.gambit.Game.delete_strategy

	Information about the game
	pygambit.gambit.Game.title
	pygambit.gambit.Game.comment
	pygambit.gambit.Game.is_const_sum
	pygambit.gambit.Game.is_tree
	pygambit.gambit.Game.is_perfect_recall
	pygambit.gambit.Game.players
	pygambit.gambit.Game.outcomes
	pygambit.gambit.Game.min_payoff
	pygambit.gambit.Game.max_payoff
	pygambit.gambit.Game.strategies
	pygambit.gambit.Game.root
	pygambit.gambit.Game.actions
	pygambit.gambit.Game.infosets
	pygambit.gambit.Game.nodes
	pygambit.gambit.Game.contingencies
	pygambit.gambit.Player.label
	pygambit.gambit.Player.number
	pygambit.gambit.Player.game
	pygambit.gambit.Player.strategies
	pygambit.gambit.Player.infosets
	pygambit.gambit.Player.actions
	pygambit.gambit.Player.is_chance
	pygambit.gambit.Player.min_payoff
	pygambit.gambit.Player.max_payoff
	pygambit.gambit.Outcome.label
	pygambit.gambit.Outcome.game
	pygambit.gambit.Node.label
	pygambit.gambit.Node.game
	pygambit.gambit.Node.outcome
	pygambit.gambit.Node.children
	pygambit.gambit.Node.parent
	pygambit.gambit.Node.is_subgame_root
	pygambit.gambit.Node.is_terminal
	pygambit.gambit.Node.prior_action
	pygambit.gambit.Node.prior_sibling
	pygambit.gambit.Node.next_sibling
	pygambit.gambit.Node.infoset
	pygambit.gambit.Node.player
	pygambit.gambit.Node.is_successor_of

	Player behavior
	pygambit.gambit.Game.mixed_strategy_profile
	pygambit.gambit.Game.mixed_behavior_profile
	pygambit.gambit.Game.support_profile

	Representation of strategic behavior
	Probability distributions over strategies
	pygambit.gambit.MixedStrategyProfile
	pygambit.gambit.MixedStrategyProfile.game
	pygambit.gambit.MixedStrategyProfile.__getitem__
	pygambit.gambit.MixedStrategyProfile.__setitem__
	pygambit.gambit.MixedStrategyProfile.payoff
	pygambit.gambit.MixedStrategyProfile.regret
	pygambit.gambit.MixedStrategyProfile.strategy_value
	pygambit.gambit.MixedStrategyProfile.strategy_value_deriv
	pygambit.gambit.MixedStrategyProfile.liap_value
	pygambit.gambit.MixedStrategyProfile.as_behavior
	pygambit.gambit.MixedStrategyProfile.randomize
	pygambit.gambit.MixedStrategyProfile.normalize
	pygambit.gambit.MixedStrategyProfile.copy

	Probability distributions over behavior
	pygambit.gambit.MixedBehaviorProfile
	pygambit.gambit.MixedBehaviorProfile.game
	pygambit.gambit.MixedBehaviorProfile.__getitem__
	pygambit.gambit.MixedBehaviorProfile.__setitem__
	pygambit.gambit.MixedBehaviorProfile.payoff
	pygambit.gambit.MixedBehaviorProfile.regret
	pygambit.gambit.MixedBehaviorProfile.action_value
	pygambit.gambit.MixedBehaviorProfile.infoset_value
	pygambit.gambit.MixedBehaviorProfile.node_value
	pygambit.gambit.MixedBehaviorProfile.realiz_prob
	pygambit.gambit.MixedBehaviorProfile.infoset_prob
	pygambit.gambit.MixedBehaviorProfile.belief
	pygambit.gambit.MixedBehaviorProfile.is_defined_at
	pygambit.gambit.MixedBehaviorProfile.liap_value
	pygambit.gambit.MixedBehaviorProfile.as_strategy
	pygambit.gambit.MixedBehaviorProfile.randomize
	pygambit.gambit.MixedBehaviorProfile.normalize
	pygambit.gambit.MixedBehaviorProfile.copy

	Computation on supports
	pygambit.supports.undominated_strategies_solve

	Computation of Nash equilibria
	pygambit.nash.enumpure_solve
	pygambit.nash.enummixed_solve
	pygambit.nash.lp_solve
	pygambit.nash.lcp_solve
	pygambit.nash.liap_solve
	pygambit.nash.logit_solve
	pygambit.nash.simpdiv_solve
	pygambit.nash.ipa_solve
	pygambit.nash.gnm_solve

	Computation of quantal response equilibria
	pygambit.qre.fit_empirical
	pygambit.qre.fit_fixedpoint
	pygambit.qre.LogitQREMixedStrategyFitResult

	The graphical interface
	General concepts
	General layout of the main window
	Payoffs and probabilities in Gambit
	A word about file formats

	Extensive games
	Creating a new extensive game
	Adding moves
	Copying and moving subtrees
	Removing parts of a game tree
	Managing information sets
	Outcomes and payoffs
	Formatting and labeling the tree
	Labels on nodes and branches
	Controlling the layout of the tree
	Selecting fonts and colors

	Strategic games
	Navigating a strategic game
	Adding players and strategies
	Editing payoffs

	Investigating dominated strategies and actions
	Dominated actions in extensive game
	Dominated strategies in strategic games

	Computing Nash equilibria
	Selecting the method of computing equilibria
	Viewing computed profiles in the game
	Computing quantal response equilibria
	Quantal response equilibria in strategic games (experimental)

	Printing and exporting games
	Printing a game
	Saving to a graphics file

	Sample games
	For developers: Building Gambit from source
	General information
	Building from git repository
	For Windows users
	For OS X users
	The graphical interface and wxWidgets
	Building the Python extension

	Game representation formats
	Conventions common to all file formats
	The extensive game (.efg) file format
	A sample file
	Structure of the prologue
	Structure of the body (list of nodes)

	The strategic game (.nfg) file format, payoff version
	A sample file
	Structure of the prologue
	Structure of the body (list of payoffs)

	The strategic game (.nfg) file format, outcome version
	A sample file
	Structure of the prologue
	Structure of the body (list of outcomes)

	The action graph game (.agg) file format
	The Bayesian action graph game (.bagg) format

	Bibliography
	Articles on computation of Nash equilibria
	General game theory articles and texts
	Textbooks and general reference

	Detailed table of contents
	Bibliography
	Index

